Comparative Clinical Pathology

, Volume 27, Issue 3, pp 795–801 | Cite as

Upregulation of two human microRNAs which might be involved in the carcinogenesis of nasopharyngeal cancer and that are promising for biomarker development

  • Widodo
  • Teresa Liliana Wargasetia
  • Didik Priyandoko
Brief Communication


One of the biggest problems in diagnosing nasopharyngeal carcinoma (NPC) is the lack of biomarkers to detect the disease in its early stages. Thus, the exploration of biomarkers, which have the potential to be used to diagnose NPC in its early stages, is crucial. NPC is allegedly controlled by microRNAs (miRNAs); these molecules can be secreted out of cells and can be found in the serum—two aspects that make them potential biomarkers to be developed for non-invasive diagnosis of NPC. In this study, we analyzed the profile of miRNA expression in NPC biopsy tissue compared to normal tissues. The miRNA expression is taken from 246 samples of patients with NPC, compared to 17 samples from non-NPC subjects as the control. The results of the analysis identified more than 100 miRNAs that underwent an upregulation of expression in NPCs compared to that in the control group. Further analysis was focused on understanding the role of the miRNAs that were upregulated in NPCs. The results of this analysis reveal that there are six miRNAs: hsa-miR-1246, hsa-miR-320a, hsa-miR-1290, hsa-miR-146b-5p, hsa-miR-107, and hsa-miR-1305, which underwent increased expression and that are closely related to process of cancer (carcinogenesis) in NPC. Among the upregulated miRNA, the two miRNAs, miR-1290 and miR-1246, were found upregulated in the serum of NPC patients compared to the health persons. Moreover, the target genes of the miRNAs are also targets of the oncovirus protein that is involved in controlling the cell cycle and apoptosis. Upregulation of the miRNA might stimulate carcinogenesis through repressing guard genes for controlling cell cycle and apoptosis. The mechanism seems similar to the way the oncovirus initiates cancer.


NPC Biomarker miRNA EBV Non-invasive diagnosis 


Funding information

We thank the Ministry of Research, Technology and higher education, republic of Indonesia for providing grant under scheme Hibah Stragnas-2017 No 063/SHP2H/LT/DRPM/IV/20017 to finish this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Ethic and informed consent

Since this article does not involve human subject or animal object then we do not comply ethical clearance.


  1. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. CrossRefPubMedGoogle Scholar
  2. Barth S, Meister G, Grässer FA (2011) EBV-encoded miRNAs. Biochim Biophys Acta 1809:631–640. CrossRefPubMedGoogle Scholar
  3. Boss IW, Renne R (2011) Viral miRNAs and immune evasion. Biochim Biophys Acta 1809:708–714. CrossRefPubMedGoogle Scholar
  4. Boxus M, Twizere J-C, Legros S, Dewulf JF, Kettmann R, Willems L (2008) The HTLV-1 tax interactome. Retrovirology 5:76. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bruce JP, Hui ABY, Shi W, Perez-Ordonez B, Weinreb I, Xu W, Haibe-Kains B, Waggott DM, Boutros PC, O’Sullivan B, Waldron J, Huang SH, Chen EX, Gilbert R, Liu FF (2015) Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma. Oncotarget 6:4537–4550. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chawla JPS, Iyer N, Soodan KS, Sharma A, Khurana SK, Priyadarshni P (2015) Role of miRNA in cancer diagnosis, prognosis, therapy and regulation of its expression by Epstein–Barr virus and human papillomaviruses: with special reference to oral cancer. Oral Oncol 51:731–737. CrossRefPubMedGoogle Scholar
  7. Dawson CW, Port RJ, Young LS (2012) The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 22:144–153. CrossRefPubMedGoogle Scholar
  8. Deng L, Wang X, Jiang L, Yang J, Zhou X, Lu Z, Hu H (2016) Modulation of miR-185-5p expression by EBV-miR-BART6 contributes to developmental differences in ABCG4 gene expression in human megakaryocytes. Int J Biochem Cell Biol 81(Part A):105–111. CrossRefPubMedGoogle Scholar
  9. Dyson N, Guida P, Münger K, Harlow E (1992) Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 66:6893–6902PubMedPubMedCentralGoogle Scholar
  10. Elgui de Oliveira D, Müller-Coan BG, Pagano JS (2016) Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol 24:649–664. CrossRefPubMedGoogle Scholar
  11. Gandhi J, Gaur N, Khera L, Kaul R, Robertson ES (2015) COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 484:1–14. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ge Q, Li H, Yang Q, Lu J, Tu J, Bai Y, Lu Z (2011) Sequencing circulating miRNA in maternal plasma with modified library preparation. Clin Chim Acta 412:1989–1994. CrossRefPubMedGoogle Scholar
  13. Goretti E, Wagner DR, Devaux Y (2014) miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 20:716–725. CrossRefPubMedGoogle Scholar
  14. Hartmann S, Döring C, Agostinelli C, Portscher-Kim SJ, Lonardi S, Lorenzi L, Fuligni F, Martinez D, Mehta J, Borges A, Hackstein H, Kippenberger S, Piccaluga PP, Simonitsch-Klupp I, Cabeçadas J, Campo E, Facchetti F, Pileri SA, Hansmann ML (2016) miRNA expression profiling divides follicular dendritic cell sarcomas into two groups, related to fibroblasts and myopericytomas or Castleman’s disease. Eur J Cancer 64:159–166. CrossRefPubMedGoogle Scholar
  15. Ho Y, Tsao S-W, Zeng M, Lui VWY (2013) STAT3 as a therapeutic target for Epstein-Barr virus (EBV)—associated nasopharyngeal carcinoma. Cancer Lett 330:141–149. CrossRefPubMedGoogle Scholar
  16. James CD, Roberts S (2016) Viral interactions with PDZ domain-containing proteins—an oncogenic trait? Pathogens 5:8.
  17. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kang M-S, Kieff E (2015) Epstein–Barr virus latent genes. Exp Mol Med 47:e131. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin Z, Flemington EK (2011) miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett 305:186–199. CrossRefPubMedGoogle Scholar
  20. Lo K-W, Chung GT-Y, To K-F (2012) Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 22:79–86. CrossRefPubMedGoogle Scholar
  21. Lu J, Tang M, Li H, Xu Z, Weng X, Li J, Yu X, Zhao L, Liu H, Hu Y, Tan Z, Yang L, Zhong M, Zhou J, Fan J, Bode AM, Yi W, Gao J, Sun L, Cao Y (2016) EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett 380:191–200. CrossRefPubMedGoogle Scholar
  22. Ma L, Deng X, Wu M, Zhang G, Huang J (2014) Down-regulation of miRNA-204 by LMP-1 enhances CDC42 activity and facilitates invasion of EBV-associated nasopharyngeal carcinoma cells. FEBS Lett 588:1562–1570. CrossRefPubMedGoogle Scholar
  23. Marquitz AR, Raab-Traub N (2012) The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol 22:166–172. CrossRefPubMedGoogle Scholar
  24. Pegtel DM, van de Garde MDB, Middeldorp JM (2011) Viral miRNAs exploiting the endosomal–exosomal pathway for intercellular cross-talk and immune evasion. Biochim Biophys Acta 1809:715–721. CrossRefPubMedGoogle Scholar
  25. Peng J, Feng Y, Rinaldi G, Levine P, Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Mulvenna JP, Bethony JM, Plieskatt JL (2014) Profiling miRNAs in nasopharyngeal carcinoma FFPE tissue by microarray and next generation sequencing. Genom Data 2:285–289. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Plieskatt JL, Rinaldi G, Feng Y, Peng J, Yonglitthipagon P, Easley S, Laha T, Pairojkul C, Bhudhisawasdi V, Sripa B, Brindley PJ, Mulvenna JP, Bethony JM (2014) Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini. J Hepatol 61:850–858. CrossRefPubMedGoogle Scholar
  27. Rosales-Pérez S, Cano-Valdez AM, Flores-Balcázar CH, Guedea-Edo F, Lino-Silva LS, Lozano-Borbalas A, Navarro-Martín A, Poitevin-Chacón A (2014) Expression of Epstein-Barr virus-encoded latent membrane protein (LMP-1), p16 and p53 proteins in nonendemic nasopharyngeal carcinoma (NPC): a clinicopathological study. Arch Med Res 45:229–236. CrossRefPubMedGoogle Scholar
  28. Saha A, Bamidele A, Murakami M, Robertson ES (2011) EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. J Virol 85:2079–2088. CrossRefPubMedGoogle Scholar
  29. Sung W-W, Chu Y-C, Chen P-R, Liao MH, Lee JW (2016) Positive regulation of HIF-1A expression by EBV oncoprotein LMP1 in nasopharyngeal carcinoma cells. Cancer Lett 382:21–31. CrossRefPubMedGoogle Scholar
  30. Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A 90:5455–5459CrossRefPubMedPubMedCentralGoogle Scholar
  31. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. CrossRefPubMedGoogle Scholar
  32. Topol A, Zhu S, Hartley BJ, English J, Hauberg ME, Tran N, Rittenhouse CA, Simone A, Ruderfer DM, Johnson J, Readhead B, Hadas Y, Gochman PA, Wang YC, Shah H, Cagney G, Rapoport J, Gage FH, Dudley JT, Sklar P, Mattheisen M, Cotter D, Fang G, Brennand KJ (2016) Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Rep 15:1024–1036. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vlachos IS, Kostoulas N, Vergoulis T, et al (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40:W498–504.
  34. Widodo, Djati MS, Rifa’i M (2016) Role of MicroRNAs in carcinogenesis that potential for biomarker of endometrial cancer. Ann Med Surg 7:9–13. CrossRefGoogle Scholar
  35. Xu Q, Liu J, Yuan Y (2015) Comprehensive assessment of the association between miRNA polymorphisms and gastric cancer risk. Mutat Res Rev Mutat Res 763:148–160. CrossRefPubMedGoogle Scholar
  36. Ye Y, Zhou Y, Zhang L, Chen Y, Lyu X, Cai L, Lu Y, Deng Y, Wang J, Yao K, Fang W, Cai H, Li X (2013) EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochem Biophys Res Commun 436:19–24. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biology Department, Faculty of Mathematics and Natural SciencesBrawijaya UniversityMalangIndonesia
  2. 2.Faculty of MedicineUniversitas Kristen Maranatha (Maranatha Christian University)Jl. Prof. Drg. Suria Sumantri MPH No. 65, Bandung, 40164Indonesia
  3. 3.Departmen of Biology, Faculty of Mathematics and Science EducationUPIBandungIndonesia

Personalised recommendations