Exceptional Algebraic Sets for Infinite Discrete Groups of \(PSL(3,\mathbb {C})\)


In this note we show that the exceptional algebraic set for an infinite discrete group in \(PSL(3,{{\mathbb {C}}})\) should be a finite union of: complex lines, copies of the Veronese curve or copies of the cubic \(xy^2-z^3\).

This is a preview of subscription content, log in to check access.


  1. Barrera, W., Cano, A., Navarrete, J.P., Seade, Y.J.: Purely parabolic discrete groups pf \(PSL(3,\mathbb{C})\), preprint arXiv:1802.08360 (2020)

  2. Barrera, W., Cano, A., Navarrete, J.P.: On the number of lines in the limit set for discrete subgroups of \(PSL(3, \mathbb{c})\). Pacific J. Math. 281(1), 17–49 (2016)

    MathSciNet  Article  Google Scholar 

  3. Briend, J.Y., Cantat, S., Shishikura, M.: Linearity of the exceptional set for maps of \(P_ k (C)\). M. Math. Ann. 330(1), 39–43 (2004)

    MATH  Google Scholar 

  4. Cano, A., Navarrete, J.P., Seade, J.: Complex Kleinian groups. In: Progress in Mathematics, no. 303, Birkhauser/Springer Basel AG, Basel (2013)

  5. Cano, A., Loeza, L.: Two dimensional Veronese groups with an invariant ball. Int. J. Math. 28(10), 1750070 (2017). https://doi.org/10.1142/S0129167X17500707

    MathSciNet  Article  MATH  Google Scholar 

  6. Cano, A., Seade, J.: On discrete groups of automorphisms of \(\mathbb{P}^2_{\mathbb{C}}\). Geom. Dedicata 168(1), 9–60 (2014)

    MathSciNet  Article  Google Scholar 

  7. Cano, A., Loeza, L., Ucan-Puc, A.: Projective cyclic groups in higher dimensions. Linear Alg. Appl. 531, 169–209 (2017)

    MathSciNet  Article  Google Scholar 

  8. Cerveau, D., Lins, A.: Hypersurfaces exceptionnelles des endomorphismes de \(\mathbb{CP}^n\). Boletim Soc. Bras. Matematica 31(2), 155–161 (2000)

    Article  Google Scholar 

  9. Fischer, G.: Plane Algebraic Curves, Student Mathematical Library, vol. 15. AMS, New York (2001)

    Google Scholar 

  10. Fornaes, J.F., Sibony, N.: Complex dynamic in higher dimension. I. Astérisque 222, 201–231 (1994)

    MathSciNet  Google Scholar 

  11. Greenberg, L.: Discrete subgroups of the Lorentz group. Math. Scand. 10, 85–107 (1962)

    MathSciNet  Article  Google Scholar 

  12. Kapovich, M.: Hyperbolic manifolds and discrete groups, modern Birkhäuser classics book series (2010)

  13. Kulkarni, R.S.: Groups with domains of discontinuity. Math. Ann. No. 237, 253–272 (1978)

    MathSciNet  Article  Google Scholar 

  14. Miranda, R.: Algebraic Curves and Riemann Surfaces, Graduate Studies in Mathematics, vol. 5. AMS, New York (1995)

    Google Scholar 

  15. Navarrete, J.P.: The trace function and Complex Kleinian groups. Int. J. Math. 19(07), 865–890 (2008)

    MathSciNet  Article  Google Scholar 

  16. Seade, J., Verjovsky, A.: Higher dimensional complex Kleinian groups. Math. Ann. 322, 279–300 (2002)

    MathSciNet  Article  Google Scholar 

  17. Shafaverich, I.R.: Basic Algebraic Geometry 1. Springer, Berlin, Heidelberg (1994)

    Google Scholar 

Download references


The authors would like to thank to the UCIM UNAM and their people for its hospitality and kindness during the writing of this paper. We also grateful to J. F. Estrada and J. J. Zacarías for fruitful conversations.

Author information



Corresponding author

Correspondence to Luis Loeza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by grants of projects PAPIIT UNAM: IN110219.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loeza, L., Cano, A. Exceptional Algebraic Sets for Infinite Discrete Groups of \(PSL(3,\mathbb {C})\). Bull Braz Math Soc, New Series (2020). https://doi.org/10.1007/s00574-020-00218-5

Download citation


  • Complex Kleinian groups
  • Exceptional algebraic set
  • Veronese groups.

Mathematics Subject Classification

  • Primary 37F99
  • Secondary 30F40
  • 20H10
  • 57M60