Fast Voltage Dynamics of Voltage–Conductance Models for Neural Networks

Abstract

We present the conductance limit of the voltage–conductance model with random firing voltage when conductance dynamics are slower than the voltage dynamics. The result of the limiting procedure is a transport/Fokker–Planck equation for conductance variable with a non-linear drift which depends on the total firing rate. We analyze the asymptotic behavior of the limit equation under two possible rescalings which relate the voltage scale, the conductance scale and the firing rate. We provide the sufficient framework in which the limiting procedure can be rigorously justified. Moreover, we also suggest a sufficient condition on the parameters and firing distribution in the limiting conductance equation under which we are able to obtain a unique stationary state and its asymptotic stability. Finally, we provide several numerical illustrations supporting the analytic results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neural activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  2. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking networks. J. Comput. Neurosci. 8, 183–208 (2000)

    Article  Google Scholar 

  3. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with long firing rates. Neural Comput. 11, 1621–1671 (1999)

    Article  Google Scholar 

  4. Cañizo, J.A., Yoldaş, H.: Asymptotic behaviour of neuron population models structured by elapsed-time. Nonlinearity 32, 464–495 (2019)

    MathSciNet  Article  Google Scholar 

  5. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate and fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011)

    MathSciNet  Article  Google Scholar 

  6. Cáceres, M.J., Carrillo, J.A., Tao, L.: A numerical solver for a nonlinear Fokker–Planck equation representation of neuronal network dynamics. J. Comput. Phys. 230, 1084–1099 (2011)

    MathSciNet  Article  Google Scholar 

  7. Cai, D., Tao, L., Rangan, A.V., McLaughlin, D.W.: Kinetic theory for neuronal network dynamics. Commun. Math. Sci. 4, 97–127 (2006)

    MathSciNet  Article  Google Scholar 

  8. Cai, D., Tao, L., Shelley, M., McLaughlin, D.W.: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. PNAS 101, 7757–7762 (2004)

    Article  Google Scholar 

  9. Carrillo, J.A., Perthame, B., Salort, D., Smets, D.: Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28, 3365–3388 (2015)

    MathSciNet  Article  Google Scholar 

  10. Chevallier, J., Càceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25, 2669–2719 (2015)

    MathSciNet  Article  Google Scholar 

  11. Chiani, M., Dardari, D., Simon, M.K., Cooper, G.: New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Trans. Wirel. Commun. 2, 840–845 (2003)

    Article  Google Scholar 

  12. Dumont, G., Henry, J.: Synchronization of an excitatory integrate-and-fire neural network. Bull. Math. Biol. 75, 629–648 (2013)

    MathSciNet  Article  Google Scholar 

  13. Fourcaud, N., Brunel, N.: Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput. 14, 2057–2110 (2002)

    Article  Google Scholar 

  14. Fournier, N., Perthame, B.: Monge–Kantorovich distance for PDEs: the coupling method. Preprint, hal-02080155 (2019)

  15. Mischler, S., Weng, Q.: Relaxation in time elapsed neuron network models in the weak connectivity regime. Acta Appl. Math. 157, 45–74 (2018)

    MathSciNet  Article  Google Scholar 

  16. Pakdaman, K., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J. Math. Neurosci. 4, 14 (2014)

    MathSciNet  Article  Google Scholar 

  17. Perthame, B., Salort, D.: On a voltage–conductance kinetic system for integrate and fire neural networks. Kinet. Relat. Models 6, 841–864 (2013)

    MathSciNet  Article  Google Scholar 

  18. Perthame, B., Salort, D.: Derivation of an integrate and fire equation for neural networks from a voltage–conductance kinetic model. Commun. Math. Sci. 17, 1193–1211 (2019)

    MathSciNet  Article  Google Scholar 

  19. Rangan, A.V., Kovacic, G., Cai, D.: Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915 (2008)

    MathSciNet  Article  Google Scholar 

  20. Sirovich, L., Omurtag, A., Lubliner, K.: Dynamics of neural populations: stability and synchrony. Netw. Comput. Neural Syst. 17, 3–29 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

BP has received funding from the European Research Council (ERC) under the European Union’s c innovation programme (Grant agreement no. 740623).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benoît Perthame.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Perthame, B. & Salort, D. Fast Voltage Dynamics of Voltage–Conductance Models for Neural Networks. Bull Braz Math Soc, New Series 52, 101–134 (2021). https://doi.org/10.1007/s00574-019-00192-7

Download citation

Keywords

  • Voltage–conductance model
  • Integrate-and-Fire
  • Asymptotic behavior
  • Neuron assemblies

Mathematics Subject Classification

  • 35Q92
  • 35Q84
  • 92B20