Solution of Nonlinear Integral Equation via Fixed Point of Cyclic \(\alpha _{L}^{ \psi }\)-Rational Contraction Mappings in Metric-Like Spaces


In this paper, we introduce the notions of \(\alpha _{L}^{\psi }\)-rational contractive and cyclic \(\alpha _{L}^{\psi }\)- rational contractive mappings and establish the existence and uniqueness of fixed points for such mappings in complete metric-like spaces (dislocated metric spaces). The results presented here substantially generalize and extend several comparable results in the existing literature. As an application, we prove new fixed point results for \(\psi L\)-graphic and cyclic \(\psi L\)-graphic rational contractive mappings. Moreover, some examples and an application to integral equation are presented here to illustrate the usability of the obtained results.

This is a preview of subscription content, log in to check access.


  1. Aage, C.T., Salunke, J.N.: The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci. 2(59), 2941–2948 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Hussain, N., Taoudi, M.A.: Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012, 245872 (2012)

  3. Amini-Harandi, A.: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 204 (2012)

    MathSciNet  Article  Google Scholar 

  4. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)

    MathSciNet  Article  Google Scholar 

  5. Gopal, D., Abbas, M., Vetro, C.: Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation. Appl. Math. Comput. 232, 955–967 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Hitzler, P.: Generalized metrics and topology in logic programming semantics. Ph.D. thesis, School of Mathematics, Applied Mathematics and Statistics, National University Ireland, University college Cork (2001)

  7. Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for \(\psi \)-graphic contractions with application to integral equations. Abstr. Appl. Anal. 2013, 575869 (2013)

  8. Hussain, N., Kutbi, M.A., Salimi, P.: Fixed point theory in \(\alpha \)-complete metric spaces with applications. Abstr. Appl. Anal. 2014, 280817 (2014)

  9. Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 1(136), 1359–1373 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Karapinar, E., Salimi, P.: Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory Appl. 2013, 222 (2013)

    MathSciNet  Article  Google Scholar 

  11. Kirk, W.A., Srinavasan, P.S., Veeramani, P.: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 4, 79–89 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Liu, Z., Li, X., Minkan, S., Cho, S.Y.: Fixed point theorems for mappings satisfying contractive condition of integral type and applications. Fixed Point Theory Appl. 2011, 64 (2011).

    MathSciNet  Article  Google Scholar 

  13. Matthews, S.G.: Partial metric topology, In: Proceedings of the 8th summer conference on general topology and applications, Annals of the New York Academy of Sciences, vol. 728, pp. 183–197 (1994)

    MathSciNet  Article  Google Scholar 

  14. Pathak, H.K., Khan, M.S., Tiwari, R.: A common fixed point theorem and its application to nonlinear integral equations. Comput. Math. Appl. 53, 961–971 (2007)

    MathSciNet  Article  Google Scholar 

  15. Radenović, S., Došenović, T., Lampert, T.A., Golubovíć, Z.: A note on some recent fixed point results for cyclic contractions in \(b\)-metric spaces and an application to integral equations. Appl. Math. Comput. 273, 155–164 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Ran, A.C.M., Reuring, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2004)

    MathSciNet  Article  Google Scholar 

  17. Salimi, P., Vetro, C., Vetro, P.: Fixed point theorems for twisted \((\alpha,\beta )-\psi \)-contractive type mappings and applications. Filomat 27(4), 605–615 (2013)

    MathSciNet  Article  Google Scholar 

  18. Shahzad, N., Valero, O., Alghamdi, M.A., Alghamdi, M.A.: A fixed point theorem in partial quasi-metric spaces and an application to software engineering. Appl. Math. Comput. 268, 1292–1301 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Shatanawi, W., Postolache, M.: Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 60 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  20. Shukla, S., Radenović, S., Rajić, V.Ć.: Some common fixed point theorems in 0-\(\sigma \)-complete metric-like spaces. Vietnam J. Math. 41, 341–352 (2013)

    MathSciNet  Article  Google Scholar 

  21. Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861–1869 (2008)

    MathSciNet  Article  Google Scholar 

  22. Suzuki, T.: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 71(11), 5313–5317 (2009)

    MathSciNet  Article  Google Scholar 

  23. Türkoğlu, D., Özer, O., Fisher, B.: Fixed point theorems for \(T\)-orbitally complete spaces. Mathematica 9, 211–218 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Manuel De la Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammad, H.A., De la Sen, M. Solution of Nonlinear Integral Equation via Fixed Point of Cyclic \(\alpha _{L}^{ \psi }\)-Rational Contraction Mappings in Metric-Like Spaces. Bull Braz Math Soc, New Series 51, 81–105 (2020).

Download citation


  • Cyclic contractive mapping
  • \(\alpha \)-Admissible
  • Nonlinear integral equations

Mathematics Subject Classification

  • 46N40
  • 47H10
  • 46T99