Skip to main content
Log in

Fractional Order Pseudoparabolic Partial Differential Equation: Ulam–Hyers Stability

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Using Gronwall inequality we will investigate the Ulam-Hyers and generalized Ulam–Hyers–Rassias stabilities for the solution of a fractional order pseudoparabolic partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, S., Benchohra, M.: Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal. Hybrid Syst. 4(3), 406–413 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M.: Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay. Frac. Cal. Appl. Anal. 13(3), 225–244 (2010b)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M.: Fractional order Riemann–Liouville integral inclusions with two independent variables and multiple delay. Opuscula Math. 33(2), 209–222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M.: Ulam–Hyers stability for the Darboux problem for partial fractional differential and integro-differential equations via Picard operators. Results Math. 65(1–2), 67–79 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M.: On the generalized Ulam–Hyers–Rassias stability for Darboux problem for partial fractional implicit differential equations. Appl. Math. E Notes 14, 20–28 (2014b)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Gorniewicz, L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. 72, 271–282 (2010)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Nieto, J.J.: Functional implicit hyperbolic fractional order differential equations with delay. Afr. Diaspora J. Math. New Ser. 15(1), 74–96 (2013a)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Sivasundaram, S.: Ulam stability for partial fractional differential inclusions with multiple delays and impulses via Picard operators. Nonlinear Stud. 20(4), 623–641 (2013b)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Nieto, J.J.: Ulam stabilities for partial impulsive fractional differential equations, Acta Universitatis Palackianae Olomucensis. Fac. Rerum Nat. Math. 53(1), 5–17 (2014a)

    MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Petrusel, A.: Ulam stability for partial fractional differential inclusions via Picard operators theory. Electron. J. Qual. Theor. Differ. Equations 2014(51), 1–13 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Darwish, M.A.: New stability results for partial fractional differential inclusions with not instantaneous impulses. Frac. Cal. Appl. Anal. 18(1), 172–191 (2015a)

    MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Trujillo, J.J.: Upper and lower solutions method for partial fractional differential inclusions with not instantaneous impulses. Prog. Frac. Differ. Appl. 1(1), 11–22 (2015b)

    Google Scholar 

  • Abbas, S., Albarakati, W., Benchohra, M., Trujillo, J.J.: Ulam stabilities for partial Hadamard fractional integral equations. Arab. J. Math. 5(1), 1–7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Lagreg, J.E., Alsaedi, A., Zhou, Y.: Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equations 2017(1), 180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, vol. 26. Walter de Gruyter GmbH & Co KG, Berlin, Germany (2018)

    Book  MATH  Google Scholar 

  • Ahmad, M.Z., Hanan, I.K., Fadhel, F.S.: Stability of fractional order parabolic partial differential equations using discretized back stepping method. Malays. J. Fundam. Appl. Sci. 13(4), 612–618 (2017)

    Article  Google Scholar 

  • Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  • Chen, P., Zhang, X., Li, Y.: Existence of mild solutions to partial differential equations with non-instantaneous impulses. Electron. J. Differ. Equations 241, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  • Chuong, N.M., Ke, T.D., Quan, N.N.: Stability for a class of fractional partial integro-differential equations. J. Integr. Equations Appl. 26(2), 145–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • de Oliveira, E.C., Sousa, J.V.C.: Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73, 111 (2018). https://doi.org/10.1007/s00025-018-0872-z

    Article  MathSciNet  MATH  Google Scholar 

  • Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publ. Comp, New Jersey (2014)

    Book  MATH  Google Scholar 

  • Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27(4), 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  • Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  • Long, H.V., Thao, H.T.P.: Hyers–Ulam stability for nonlocal fractional partial integro-differential equation with uncertainty. J. Intell. Fuzzy Syst. 24(1), 233–244 (2018)

    Article  Google Scholar 

  • Long, H.V., Son, N.T.K., Tam, H.T.T., Yao, J.-C.: Ulam stability for fractional partial integro-differential equation with uncertainty. Acta Math. Vietnam. 42(4), 675–700 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lungu, N., Ciplea, S.A.: Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations. Carpath. J. Math. 31(2), 233–240 (2015)

    MathSciNet  MATH  Google Scholar 

  • Oliveira, D.S., Oliveira, E.: Capelas de: On a Caputo-type fractional derivative. Adv. Pure Appl. Math (2018) (accepted)

  • Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, vol. 1993. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  • Sousa, J.V.C., de Oliveira, E.C: A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator (2017). arXiv:1709.03634 [math.CA]

  • Sousa, J.V.C., de Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018a)

    Article  MathSciNet  Google Scholar 

  • Sousa, J. V.C., de Oliveira, E.C.: On a new operator in fractional calculus and applications (2018b). arXiv:1710.03712

  • Sousa, J.V.C., de Oliveira, E.C.: On the stability of a hyperbolic fractional partial differential equation (2018c). arXiv:1805.05546

  • Sousa, J.V.C., de Oliveira, E.C.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018d)

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa, J.V.C., de Oliveira, E.C.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator. Fixed Point Theory Appl. 20, 96 (2018e). https://doi.org/10.1007/s11784-018-0587-5

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa, J.V.C., de Oliveira, E.C., Rodrigues, F.G.: Stability of the fractional Volterra integro-differential equation by means of \(\psi \)-Hilfer operator (2018). arXiv:1804.02601

  • Ulam, S.M.: A Collection of Mathematical Problems Interscience Publishers, pp. 665–666. Interscience, New York (1968)

  • Vivek, D., Kanagarajan, K., Elsayed, E.M.: Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 15(1), 15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, Z., Zhang, H.: Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay. Electron. J. Differ. Equations 2013(206), 1–29 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We remain indebted to the anonymous referee. Your comments and suggestions have improved the paper unequivocally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Oliveira, E.C.d. Fractional Order Pseudoparabolic Partial Differential Equation: Ulam–Hyers Stability . Bull Braz Math Soc, New Series 50, 481–496 (2019). https://doi.org/10.1007/s00574-018-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0112-x

Keywords

Navigation