Skip to main content
Log in

On the Affine Gauss Maps of Submanifolds of Euclidean Space

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

It is well known that the space of oriented lines of Euclidean space has a natural symplectic structure. Moreover, given an immersed, oriented hypersurface \(\mathcal{S}\) the set of oriented lines that cross \(\mathcal{S}\) orthogonally is a Lagrangian submanifold. Conversely, if \(\overline{\mathcal{S}}\) an n-dimensional family of oriented lines is Lagrangian, there exists, locally, a 1-parameter family of immersed, oriented, parallel hypersurfaces \(\mathcal{S}_t\) whose tangent spaces cross orthogonally the lines of \(\overline{\mathcal{S}}.\) The purpose of this paper is to generalize these facts to higher dimension: to any point x of a submanifold \(\mathcal{S}\) of \({\mathbb {R}^{}} ^m\) of dimension n and co-dimension \(k=m-n,\) we may associate the affine k-space normal to \(\mathcal{S}\) at x. Conversely, given an n-dimensional family \(\overline{\mathcal{S}}\) of affine k-spaces of \({\mathbb {R}^{}} ^m\), we provide certain conditions granting the local existence of a family of n-dimensional submanifolds \(\mathcal{S}\) which cross orthogonally the affine k-spaces of \(\overline{\mathcal{S}}\). We also define a curvature tensor for a general family of affine spaces of \({\mathbb {R}^{}} ^m\) which generalizes the curvature of a submanifold, and, in the case of a 2-dimensional family of 2-planes in \({\mathbb {R}^{}} ^4\), show that it satisfies a generalized Gauss–Bonnet formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anciaux, H.: Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces. Trans. AMS 366, 2699–2718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W., Li, H.: The Gauss map of space-like surfaces in \(\mathbb{R}_p^{2+p}\). Kyushu J. Math. 51, 217–224 (1997)

    Article  MathSciNet  Google Scholar 

  • Friedrich, Th.: Dirac operators in Riemannian geometry. Graduate studies in Mathematics 25 AMS

  • Guilfoyle, B., Klingenberg, W.: Generalised surfaces in \(\mathbb{R}^3,\) Math. Proc. R. Ir. Acad. 104A(2), 199–209 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Kühnel. W.: Differential geometry, curves-surfaces–manifolds. Student Mathematical Library, vol. 16, 2nd Edn. American Mathematical Society, Providence (2006)

  • Hoffman, D., Osserman, R.: The Gauss map of surfaces in \(\mathbb{R}^n\). J. Differ. Geom. 18, 733–754 (1983)

    Article  MATH  Google Scholar 

  • Hoffman, D., Osserman, R.: The Gauss map of surfaces in \(\mathbb{R}^3\) and \(\mathbb{R}^4\). Proc. Lond. Math. Soc s3–50(1), 27–56 (1985)

    Article  Google Scholar 

  • Weiner, J.L.: The Gauss map for surfaces in 4-space. Math. Ann. 269, 541–560 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Weiner, J.L.: The Gauss map for surfaces: Part 1. The affine case. Trans. AMS 293(2), 431–446 (1986)

    MATH  Google Scholar 

  • Weiner, J.L.: The Gauss map for surfaces: Part 2. The Euclidean case. Trans. AMS 293(2), 447–466 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Anciaux.

Appendices

Appendix A: The Curvature of the Tautological Bundles

We prove here Theorem 4. We only deal with the case of the tautological bundle \(\tau _T,\) since the proof for the bundle \(\tau _N\) is very similar. We consider \(u,v\in \Gamma (T{\mathcal {Q}}_o)\) and \(\xi \in \Gamma (\tau _T)\) such that, at \(p_o,\)

$$\begin{aligned} dv(u)-du(v)=0~~~~\text{ and }~~~~\nabla ^{T}\xi =0. \end{aligned}$$
(41)

Since, in a neighborhood of \(p_o,\)

$$\begin{aligned} \nabla _u\xi =d\xi (u)-{d\xi (u)}^N=d\xi (u)-u(\xi ), \end{aligned}$$
(42)

where in this last expression \(u\in T_{p}{\mathcal {Q}}_o\) is regarded as an element of \(L({\tau _T}_p,{\tau _N}_p)\), we get

$$\begin{aligned} R^{T}(u,v)\xi= & {} \nabla ^{T}_u\nabla ^{T}_v\xi -\nabla ^{T}_v\nabla ^{T}_u\xi \nonumber \\= & {} \nabla ^{T}_u(d\xi (v)-v(\xi ))-\nabla _v(d\xi (u)-u(\xi ))\nonumber \\= & {} \big ( d(u(\xi ))(v)-d(v(\xi ))(u)\big )^T, \end{aligned}$$
(43)

where we used that \(d\circ d\ \xi =0.\) The superscript T means that we take the component of the vector belonging to \(p_o.\) We will need the following

Lemma 5

For all \(u\in T_{p}{\mathcal {Q}}_o\) and \(\xi \in p,\)

$$\begin{aligned} u(\xi )=-\frac{\epsilon _n}{2}\big (\xi \cdot p\cdot u+u\cdot p\cdot \xi \big ) \end{aligned}$$

where in the left hand side u is considered as a linear map \(p\rightarrow p^\perp \) and in the right hand side \(\xi ,p,u\) are viewed as elements of the Clifford algebra \(Cl({\mathbb {R}^{}} ^m)\); the dot ”\(\cdot \)” stands for the Clifford product in \(Cl({\mathbb {R}^{}} ^m).\)

Proof of Lemma 5

We write

$$\begin{aligned} u=\sum _{i=1}^ne_1\wedge \cdots \wedge u(e_i)\wedge \cdots \wedge e_n=\sum _{i=1}^ne_1\cdot \cdots \cdot u(e_i)\cdot \cdots \cdot e_n, \end{aligned}$$

and we compute

$$\begin{aligned} \xi \cdot p\cdot u= & {} \sum _i\xi \cdot e_1\cdot \cdots \cdot e_n \cdot e_1\cdot \cdots \cdot u(e_i)\cdot \cdots \cdot e_n\\= & {} \sum _i\xi \cdot e_1\cdot \cdots \cdot e_n \cdot e_1\cdot \cdots \cdot e_i\cdot \cdots \cdot e_n\cdot (-e_i)\cdot u(e_i)\\= & {} \sum _i\epsilon _n\ \xi \cdot e_i\cdot u(e_i) \end{aligned}$$

since \((e_1\cdot \cdots \cdot e_n)^2=-\epsilon _n.\) Similarly, we compute

$$\begin{aligned} u\cdot p\cdot \xi =\sum _i\epsilon _n\ u(e_i)\cdot e_i\cdot \xi , \end{aligned}$$

and thus get

$$\begin{aligned} \xi \cdot p\cdot u+u\cdot p\cdot \xi= & {} \epsilon _n\sum _i\left( \xi \cdot e_i\cdot u(e_i)+u(e_i)\cdot e_i\cdot \xi \right) \\= & {} \epsilon _n\sum _i\left( \xi _ie_i\cdot e_i\cdot u(e_i)+u(e_i)\cdot e_i\cdot \xi _ie_i\right) \\= & {} -2 \epsilon _n u(\xi ), \end{aligned}$$

which is the required formula. \(\square \)

Using Lemma 5, we get

$$\begin{aligned} d(u(\xi ))(v)= & {} -\frac{\epsilon _n}{2}\Big (d\xi (v)\cdot p_o\cdot u+\xi \cdot v\cdot u+\xi \cdot p_o\cdot du(v)\\&\quad +\, \, du(v)\cdot p_o\cdot \xi +u\cdot v\cdot \xi +u\cdot p_o\cdot d\xi (v)\Big ). \end{aligned}$$

Moreover, by (42) and since \(\nabla \xi =0\) at \(p_o,\) we have

$$\begin{aligned} d\xi (v)=v(\xi )=-\frac{\epsilon _n}{2}\big (\xi \cdot p_o\cdot v+v\cdot p_o\cdot \xi \big ), \end{aligned}$$

and we thus obtain an expression of \(d(u(\xi ))(v)\) in terms of the Clifford products of \(u,v,\xi ,p_o\) and du. Switching u and v we get a similar formula for \(d(u(\xi ))(v).\) Plugging these two formulas in (43) and using the first identity in (41) we may then easily get

$$\begin{aligned} R(u,v)\xi =\epsilon _n\big ([\xi ,[u,v]]\big )^T \end{aligned}$$

(using moreover that \(u\cdot p_o=-p_o\cdot u,\)\(v\cdot p_o=-p_o\cdot v\) and \(p_o\cdot p_o=-\epsilon _n\)); this gives the result since \([\xi ,[u,v]]\) is in fact a vector belonging to \(p_o\): indeed, it is easy to check that [uv] belongs to \(\Lambda ^2p_o\oplus \Lambda ^2p_o^\perp \) if u and v are tangent to \({\mathcal {Q}}_o\) at \(p_o,\) and then that \([\xi ,[u,v]]\) belongs to \(p_o\) if \(\xi \) belongs to \(p_o.\)

Finally, we provide another useful formula for the curvature of the tautological bundle \(\tau _N\rightarrow {\mathcal {Q}}_o\):

Lemma 6

Let \(\omega _o\in \Omega ^2({\mathcal {Q}}_o,End(\tau _N))\) be the curvature of \(\tau _N\rightarrow {\mathcal {Q}}_o.\) Then, for \(u,v\in T_{p}{\mathcal {Q}}_o,\)

$$\begin{aligned} \omega _o(u,v)=u\circ v^*-v\circ u^*, \end{aligned}$$

where \(u,v:p\rightarrow p^\perp \) are regarded as linear maps and \(u^*,v^*:p^{\perp }\rightarrow p\) are their adjoint.

Proof

We first note that the adjoint map \(u^*:p^{\perp }\rightarrow p\) is explicitly given in terms of the Clifford product by the formula

$$\begin{aligned} u^*(\xi )=-\frac{\epsilon _n}{2}\left( \xi \cdot p\cdot u+u\cdot p\cdot \xi \right) , \, \, \, \forall \xi \in p^{\perp }; \end{aligned}$$

This is the same formula than the formula for \(u:p\rightarrow p^{\perp }\) given in Lemma 5. A straightforward computation then gives

$$\begin{aligned} (u\circ v^*-v\circ u^*)(\xi )= & {} \frac{1}{4}\left\{ (\xi \cdot p\cdot v+v\cdot p\cdot \xi )\cdot p\cdot u+ u\cdot p\cdot (\xi \cdot p\cdot v+v\cdot p\cdot \xi )\right. \\&\left. -(\xi \cdot p\cdot u+u\cdot p\cdot \xi )\cdot p\cdot v-v\cdot p\cdot (\xi \cdot p\cdot u+u\cdot p\cdot \xi )\right\} \end{aligned}$$

which simplifies to

$$\begin{aligned} (u\circ v^*-v\circ u^*)(\xi )= & {} \frac{1}{4}\left\{ \xi \cdot p\cdot v\cdot p\cdot u+ u\cdot p\cdot v\cdot p\cdot \xi -\xi \cdot p\cdot u\cdot p\cdot v\right. \\&\left. -v\cdot p\cdot u\cdot p\cdot \xi \right\} . \end{aligned}$$

Now, we have \(p^2=-\epsilon _n\) and

$$\begin{aligned} p\cdot u+u\cdot p= 0\\ p\cdot v+v\cdot p = 0 \end{aligned}$$

\(\forall u,v\in T_p{\mathcal {Q}}_o\), and we get

$$\begin{aligned} (u\circ v^*-v\circ u^*)(\xi )= & {} \frac{\epsilon _n}{4}\left\{ \xi \cdot (u\cdot v-v\cdot u)-(u\cdot v-v\cdot u)\cdot \xi \right\} \\= & {} \epsilon _n[\xi ,[u,v]]. \end{aligned}$$

This is the expression of the curvature of the bundle \(\tau _N\rightarrow {\mathcal {Q}}_o\) given in Theorem 4. \(\square \)

We immediately deduce the following

Corollary 2

For a smooth map \(\overline{\varphi }_o:\mathcal{M}\rightarrow {\mathcal {Q}}_o,\) we have

$$\begin{aligned} \overline{\varphi }_o^*\omega _o(X,Y)=d\overline{\varphi }_o(X)\circ d\overline{\varphi }_o(Y)^*-d\overline{\varphi }_o(Y)\circ d\overline{\varphi }_o(X)^*, \end{aligned}$$

\(\forall X,Y\in T\mathcal{M},\) where \(\overline{\varphi }_o^*\omega _o(X,Y)\) belonging to \(\Lambda ^2\overline{\varphi }_o^{\perp }\) is regarded as a map \(\overline{\varphi }_o^{\perp }\rightarrow \overline{\varphi }_o^{\perp }.\)

Appendix B: The Abstract Shape Operator B Identifies to the Differential of the Gauss Map

The aim is to link the tensor B to the differential of the Gauss map. The next lemma first shows that B is the pull-back of a natural tensor on the tautological bundles on the Grassmannian \({\mathcal {Q}}_o\):

Lemma 7

Let us define

$$\begin{aligned} B': \tau _N\rightarrow & {} T^*{\mathcal {Q}}_o\otimes \tau _T\\ \xi\mapsto & {} Y\mapsto -(d\xi (Y))^T, \end{aligned}$$

where, in the right hand side, \(\xi \) is exfvtended to a local section of \(\tau _N\rightarrow {\mathcal {Q}}_o.\) We have:

  1. (i)

    \(B'\) is a tensor; precisely,

    $$\begin{aligned}B'(\xi )(Y)=Y^*(\xi ),\end{aligned}$$

    for all \( \xi \in {\tau _N}_{p_o}\simeq p_o^{\perp }\) and \(Y\in T_{p_o}{\mathcal {Q}}_o\simeq L(p_o,p_o^{\perp }),\) where Y is considered as a linear map \(p_o\rightarrow p_o^{\perp }\) and \(Y^*: p_o^{\perp }\rightarrow p_o\) is its adjoint.

  2. (ii)

    B is the pull-back of \(B'\) by the Gauss map:

    $$\begin{aligned}B={\overline{\varphi }_o}^*B'.\end{aligned}$$

Proof of (i)

Let \(p_o\in {\mathcal {Q}}_o\) be an oriented n-plane, and \(\xi \in p_o^\perp \) a vector normal to \(p_o,\) extended to a local section of \(\tau _N\rightarrow {\mathcal {Q}}_o.\) Let us consider \(* p_o,\) the multi-vector belonging to \(\Lambda ^k{\mathbb {R}^{}} ^m\) which represents the linear space \(p_o^\perp ,\) with its natural orientation. We first observe that

$$\begin{aligned} (d\xi (Y))^T=i_{*p_o}\left( *p_o\wedge d\xi (Y)\right) , \, \, \, \forall Y\in T_{p_o}{\mathcal {Q}}_o. \end{aligned}$$

Since \(*p_o\wedge \xi \equiv 0\) on \({\mathcal {Q}}_o,\) we have

$$\begin{aligned} *p_o\wedge d\xi (Y)=-(*Y)\wedge \xi , \end{aligned}$$

and thus

$$\begin{aligned} -(d\xi (Y))^T=i_{*p_o}\left( (*Y)\wedge \xi \right) . \end{aligned}$$

We finally observe that this expression is \(Y^*(\xi ),\) where \(Y^*\) is the adjoint of the map represented by Y: let \(Y_{ij}\) be the scalar such that

$$\begin{aligned} Y(u_j)=\sum _{i=1}^kY_{ij}\, u_{n+i},\, \, \, \, \, \, \forall j, \, 1 \le j \le n, \end{aligned}$$

where \((u_1,\ldots ,u_n)\) and \((u_{n+1},\ldots ,u_{n+k})\) are positively oriented, orthonormal bases of \(p_o\) and \(p_o^{\perp }\) respectively. We have

$$\begin{aligned} Y= & {} \sum _{j=1}^n u_1\wedge \cdots \wedge u_{j-1}\wedge Y(u_j)\wedge u_{j+1}\wedge \cdots \wedge u_n\\= & {} \sum _{i=1}^k\sum _{j=1}^nY_{ij}\, u_1\wedge \cdots \wedge u_{j-1}\wedge u_{n+i}\wedge u_{j+1}\wedge \cdots \wedge u_n \end{aligned}$$

and

$$\begin{aligned} *Y= & {} \sum _{i=1}^k\sum _{j=1}^n Y_{ij}\ *\left( u_1\wedge \cdots \wedge u_{j-1}\wedge u_{n+i}\wedge u_{j+1}\wedge \cdots \wedge u_n\right) \\= & {} -\sum _{i=1}^k\sum _{j=1}^n Y_{ij}\ u_{n+1}\wedge \cdots \wedge u_{n+i-1}\wedge u_{j}\wedge u_{n+i+1}\wedge \cdots \wedge u_{n+k}. \end{aligned}$$

Since \(*p_o=u_{n+1}\wedge \cdots \wedge u_{n+k},\) we get

$$\begin{aligned} i_{*p_o}\left( (*Y)\wedge u_{n+i}\right) =\sum _{j=1}^n Y_{ij}\, u_j, \, \, \, \, \, \, \forall j, \, 1 \le j \le k, \end{aligned}$$

and the claim follows. \(\square \)

Proof of (ii)

Assume that \(\xi \in \Gamma (\tau _N);\) then \(\xi \circ \overline{\varphi }_o\in \Gamma (E_N),\) and

$$\begin{aligned} B(\xi \circ \overline{\varphi }_o)(X)= & {} (d(\xi \circ \overline{\varphi }_o)(X))^T \\= & {} \big (d\xi (d\overline{\varphi }_o(X)) \big )^T\\= & {} B'(\xi )(d\overline{\varphi }_o(X)) \\= & {} \overline{\varphi }_o^*B'(\xi \circ \overline{\varphi }_o)(X), \quad \quad \forall X\in \Gamma (T\mathcal{M}). \end{aligned}$$

\(\square \)

Using Lemma 7, we deduce that if \(\xi \) belongs to the fibre of \( {\overline{\varphi }_o}^*\tau _N\) at the point \(x_o\in \mathcal{M},\) then

$$\begin{aligned} B(\xi )(X)=d {\overline{\varphi }_o}_{x_o}(X)^*(\xi ), \quad \forall X\in T_{x_o}\mathcal{M}, \end{aligned}$$

where \(d {\overline{\varphi }_o}_{x_o}(X)^*\) is regarded as a map \(\overline{\varphi }_o(x_o)^{\perp }\rightarrow \overline{\varphi }_o(x_o)\); this naturally identifies B with \(d{\overline{\varphi }}_o.\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anciaux, H., Bayard, P. On the Affine Gauss Maps of Submanifolds of Euclidean Space. Bull Braz Math Soc, New Series 50, 137–165 (2019). https://doi.org/10.1007/s00574-018-0096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0096-6

Keywords

Mathematics Subject Classification

Navigation