Skip to main content
Log in

Equilibrium State for One-Dimensional Lorenz-Like Expanding Maps

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Let \(L:[0,1]{\setminus }\{d\}\rightarrow [0,1]\) be a one-dimensional Lorenz-like expanding map (d is the point of discontinuity), \(\mathcal {P}=\{ (0,d),(d,1) \}\) and \(C^{\alpha }([0,1],{\mathcal {P}})\) the set of piecewise Hölder-continuous potentials of [0, 1] with the usual \(\mathcal {C}^0\) topology. In this context, applying a criteria by Buzzi and Sarig (Ergod Theory Dyn Syst 23(5):1383–1400, 2003, Th. 1.3), we prove that there exists an open and dense subset \(\mathcal {H}\) of \(C^{\alpha }([0,1],{\mathcal {P}})\), such that each \(\phi \in \mathcal {H}\) admits exactly one equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

  • Bruin, H.: For almost every tent map, the turning point is typical. Fund. Math. 155(3), 215–235 (1998)

    MathSciNet  MATH  Google Scholar 

  • Buzzi, Jérôme: Entropy of equilibrium measures of continuous piecewise monotonic maps. Stoch. Dyn. 4(1), 84–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23(5), 1383–1400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chazottes, Jean-René., Keller, G.: Pressure and equilibrium states in ergodic theory. In: Mathematics of Complexity and Dynamical Systems. 1–3, pp. 1422–1437. Springer, New York (2012)

  • Climenhaga, V., Thompson, D.J.: Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. (2) 87(2), 401–427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Climenhaga, V., Thompson, D.J., Yamamoto, K.: Large deviations for systems with non-uniform structure. Trans. Am. Math. Soc. 369(6), 4167–4192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Denker, M., Urbański, M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1), 103–134 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Denker, M., Keller, G., Urbański, M.: On the uniqueness of equilibrium states for piecewise monotone mappings. Studia Math. 97(1), 27–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Denker, M., Przytycki, F., Urbański, M.: On the transfer operator for rational functions on the Riemann sphere. Ergod. Theory Dyn. Syst. 16(2), 255–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Faller, B., Pfister, C.-E.: A point is normal for almost all maps \(\beta x+\alpha \) mod 1 or generalized \(\beta \)-transformations. Ergod. Theory Dyn. Syst. 29(5), 1529–1547 (2009)

    Article  MATH  Google Scholar 

  • Glendinning, P.: Topological conjugation of Lorenz maps by \(\beta \)-transformations. Math. Proc. Camb. Philos. Soc. 107(2), 401–413 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Graczyk, J., Swipolhk A., G.: The real Fatou conjecture. Ann. Math. Stud. vol. 144. Princeton University Press, Princeton (1998)

  • Guckenheimer, J.: A strange, strange attractor, in the hopf bifurcation theorem and its applications. In: Marsden, J., McCracken, M. (Eds.), pp. 368–381. Springer (1976)

  • Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Haydn, N.: Convergence of the transfer operator for rational maps. Ergod. Theory Dyn. Syst. 19(3), 657–669 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, Franz.: Examples for the nonuniqueness of the equilibrium state. Trans. Am. Math. Soc. 228, 223–241 (1977)

  • Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Isr. J. Math. 34(3), 213–237 (1980) (1979)

  • Hofbauer, F.: A function with countably many ergodic equilibrium states. Math. Z. 154(3), 275–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, F.: The maximal measure for linear mod one transformations. J. Lond. Math. Soc. (2) 23(1), 92–112 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, F., Keller, G.: Equilibrium states for piecewise monotonic transformations. Ergod. Theory Dyn. Syst. 2(1), 23–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, F., Keller, G.: Equilibrium states and Hausdorff measures for interval maps. Math. Nachr. 164, 239–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Inoquio-Renteria, I., Rivera-Letelier, J.: A characterization of hyperbolic potentials of rational maps. Bull. Braz. Math. Soc. (N.S.) 43(1), 99–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42. Cambridge University Press, Cambridge (1998)

  • Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Rivera-Letelier, J.: Equilibrium states of interval maps for hyperbolic potentials. Nonlinearity 27(8), 1779–1804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Rivera-Letelier, J.: Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials. Commun. Math. Phys. 328(1), 397–419 (2014)

    Article  MATH  Google Scholar 

  • Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  • Palmer, M. R.: On classification of Measure Preserving Transformations of Lebesgue Spaces. Ph.D. thesis, University of Warwick, (1979)

  • Parry, W.: The Lorenz attractor and a related population model. In: Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), volume 729 of Lecture Notes in Math., pp. 169–187. Springer, Berlin (1979)

  • Parry, W.: Symbolic dynamics and transformations of the unit interval. Trans. Am. Math. Soc. 122, 368–378 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Przytycki, F.: On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Soc. Brasil. Mat. (N.S.) 20(2), 95–125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Rand, D.: The topological classifications of the lorenz attractor. Math. Proc. Camb. Philos. Soc. 83, 451–460 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, R.C.: An introduction to dynamical systems—continuous and discrete, volume 19 of Pure and Applied Undergraduate Texts, 2nd edn. American Mathematical Society, Providence, RI (2012)

  • Ruelle, D.: Thermodynamic formalism, volume 5 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., The mathematical structures of classical equilibrium statistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo Rota (1978)

  • Sparrow, C.: The Lorenz equations: bifurcations, chaos, and strange attractors. Applied Mathematical Sciences, vol. 41. Springer, New York (1982)

  • Walters, P.: An introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)

  • Williams, R.F.: The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 73–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Ali Tahzibi for proposing the problem and for many helpful suggestions during the preparation of the paper. Also, we thank Daniel Smania and Krerley Oliveira for some helpful conversations and comments on the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bronzi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronzi, M.A., Oler, J.G. Equilibrium State for One-Dimensional Lorenz-Like Expanding Maps. Bull Braz Math Soc, New Series 49, 873–892 (2018). https://doi.org/10.1007/s00574-018-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0084-x

Keywords

Mathematics Subject Classification

Navigation