Toeplitz Operators for Wavelet Transform Related to the Spherical Mean Operator

  • Besma Amri


We define wavelets and wavelet transforms associated with spherical mean operator. We establish a Plancherel theorem, orthogonality property and inversion formula for the wavelet transform. Next, we define the Toeplitz operators \(\mathfrak {T}_{\varphi ,\psi }(\sigma )\) associated with two wavelets \(\varphi ,\psi \) and with symbol \(\sigma .\) We establish the boundedness and compactness of these operators. Last, we define the Schatten-von Neumann class \(S^p\ ;\ p\in \ [1,+\infty ],\) and we show that the Toeplitz operators belong to the class \(S^p\) and we prove a formula of trace.


Orthonormal basis Hilbert Schmidt operator Frequency localization Wavelet transform Toeplitz operator Spherical mean operator Fourier transform 

Mathematics Subject Classification

42A38 44A35 


  1. Andersson, L.E.: On the determination of a function from spherical averages. SIAM. J. Math. Anal. 19(1), 214–232 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Baccar, C.: Uncertainty principles for the continuous Hankel Wavelet transform. Integral Transforms Spec. Funct. 27(6), 413–429 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Berezin, F.A.: Wick and anti-Wick operators symbols. Sb. Math. 15(4), 577–606 (1971)CrossRefzbMATHGoogle Scholar
  4. Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics 20. Walter de Gruyter, Berlin-New York (1995)CrossRefGoogle Scholar
  5. Catanâ, V.: Schatten-von neumann norm inequalities for two-wavelet localization operators. Fields Inst. Commun. 52, 265–278 (2007)MathSciNetzbMATHGoogle Scholar
  6. Catanâ, V.: Two-wavelet localization operators on homogeneous spaces and their traces. Integr. Equ. Oper. Theory 62, 351–363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Catanâ, V.: Schatten-von Neumann norm inequalities for two-wavelet localization operators associated with \(\beta \)-Stockwell transforms. Appl Anal. 91(3), 503–515 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chui, C.K.: Schatten-von Neumann Norm Inequalities for Two-Wavelet Localization Operators. Academic Press Professional Inc., San Diego (1992)Google Scholar
  9. Chui, C.K.: An Introduction of Wavelets. Academic Press Professional Inc., San Diego (1992)zbMATHGoogle Scholar
  10. Cohen, J.K., Bleistein, N.: Velocity inversion procedure for acoustic waves. Geophysics 44(6), 1077–1087 (1979)CrossRefGoogle Scholar
  11. Cordero, E., Gröchening, K.: Time-frequency analysis of localization operators. J. Funct Anal. 205(1), 1077–1087 (2003)MathSciNetCrossRefGoogle Scholar
  12. Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Comm. Partial Differ. Equ. 3(11), 979–1005 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Daubechies, I.: Time-frequency localization operators-a geometric phase space approach: II. The use of dilations. Inverse Prob. 4(3), 661–680 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 (1992)Google Scholar
  17. Erdélyi, A., et al.: Tables of Integral Transforms, vol. 2. Mc Graw-Hill Book Compagny, New York (1954)zbMATHGoogle Scholar
  18. Erdélyi, A.: Asymptotic expansions. Dover publications, New York (1956)zbMATHGoogle Scholar
  19. Fawcett, J.A.: Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45(02), 336–341 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers, Advances in Gabor Analysis, pp. 99–128. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  21. Folland, G.B.: Real Analysis Modern Thechniques and Their Applications, Pure and Applied Mathematics. Wiley, New York (1984)Google Scholar
  22. Gröchening, K.: Foundations of Time-frequency analysis. Springer, Birkhauser (2001)Google Scholar
  23. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant schape. SIAM. J. Math. Anal. 15, 723–736 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  24. He, Z.: Spectra of Localization Operators on Groups, PhD thesis, York university Toronto, (1998)Google Scholar
  25. Helgason, S.: The Radon Transform. Progress in Mathematics. 2nd edn. Birkhäuser, Basel (1999)Google Scholar
  26. Hellsten, H., Andersson, L.-E.: An inverse method for the processing of synthetic aperture radar data. Inverse Probl. 3(1), 111–124 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D30430-3.2, National Defense Research Institude, FOA, Box 1165; S-581 11, Linköping, (1986)Google Scholar
  28. Hleili, K., Omri, S.: The Littlewood Paley g-function associated with the spherical mean operator. Mediterr. J. Math. 10(2), 887907 (2013)MathSciNetzbMATHGoogle Scholar
  29. Jelassi, M., Rachdi, L.T.: On the range of the Fourier transform associated with the spherical mean operator. Fract. Calc. Anal. 7(4), 379–402 (2004)MathSciNetzbMATHGoogle Scholar
  30. Kumar, P., Foufoula-Georgiou, E.: Wavelet analysis in geophysics: an introduction. Wavelets in geophysics 4, 1–43 (1994)MathSciNetCrossRefGoogle Scholar
  31. Koornwinder, T.H.: Wavelets: An Elementary Treatment of Theory and Applications. World Scientific Publishing Co. Pte. Ltd., Singapore (1993)CrossRefzbMATHGoogle Scholar
  32. Laugesen, R.S., Weaver, N., Weiss, G.L., Wilson, E.N.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(1), 89–102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Lebedev, N.N.: Special Functions and Their Applications. Dover publications, New York (1972)zbMATHGoogle Scholar
  34. Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for Time-frequency localization operators. J. Lond. Math. Soc. 65(3), 720–732 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  35. De Mari, F., Nowak, K.: Localization type Berezin-Toepliz. J. Geom. Anal. 2002(1), 9–27 (2002)CrossRefzbMATHGoogle Scholar
  36. Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  37. Msehli, N., Rachdi, L.T.: Beurling-Hörmander uncertainty principle for the spherical mean operator, J.Ineq. Pure Appl. Math., 10(2) (2009) (Art. 38) Google Scholar
  38. Msehli, N., Rachdi, L.T.: Heisenberg-Pauli-Weyl uncertainty principle for the spherical mean operator. Mediterr. J. Math 7, 169–194 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  39. Msehli, N., Rachdi, L.T.: Best approximation for weierstrass transform connected with spherical mean operator. Acta Math. Sci. Ser. B 32(2), 455470 (2012).
  40. Nessibi, M.M., Rachdi, L.T., Trimèche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. App. 196, 861–884 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Peng, L.Z., Zhao, J.M.: Wavelet and Weyl transforms associated with spherical mean operator. Integral Equ Oper. Theory 50, 279–290 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the spherical mean operator. Anal. Appl. 1, 141–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  43. Rachdi, L.T., Meherzi, F.: Continuous Wavelet Transform and Uncertainty Principle Related to the Spherical Mean Operator. Mediterr. J. Math. (2017). MathSciNetzbMATHGoogle Scholar
  44. Ramanathan, J., Topiwala, P.: Time-frequency localization via the Weyl coresspondence. SIAM. J. Math. Anal. 24(5), 1378–1393 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Saitoh, S.: The Weierstrass transform and an isometry in the heat equation. Appl. Anal. 16, 1–6 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Saitoh, S.: Approximate real inversion formulas of the gaussian convolution. Appl. Anal. 83(7), 727–733 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Saitoh, S.: Applications of Tikhonov regularization to inverse problems using reproducing kernels. J. Phys. Conf. Ser. 88, 012019 (2007)CrossRefGoogle Scholar
  48. Stein, E.M.: Interpolation of linear operator. Trans. Amer. Math. Soc. 83(2), 482–492 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  49. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University, New Jersey (1971)zbMATHGoogle Scholar
  50. Trimèche, K.: Inversion of the Lions translation operator using genaralized wavelets. Appl. Comput. Harmon. Anal. 4, 97–112 (1997a)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Trimèche, K.: Generalized wavelets and hypergroups. Gordon and Breach Science Publishers, Amsterdam (1997b)zbMATHGoogle Scholar
  52. Trimèche, K.: Generalized Harmonic Analysis and Wavelet Packets: An Elementary Treatment of Theory and Applications. Gordan and Breach Science Publishers, Amsterdam (2001)zbMATHGoogle Scholar
  53. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1959)Google Scholar
  54. Wong, M.W.: Localization Operators, Research Institue of Mathematics Global Analysis Research Center. Seoul National University, Seoul (1999)Google Scholar
  55. Wong, M.W.: \(L^p\)-boundedness localization operators associeted to left regular representations. Proc. Am. Math 130, 2911–2929 (2002)CrossRefzbMATHGoogle Scholar
  56. Wong, M.W.: Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications, vol. 136. Birkhäuser, Base (2002)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  1. 1.Faculté des Sciences de Tunis, UR11ES23 Analyse géométrique et harmoniqueUniversité de Tunis El ManarTunisTunisia

Personalised recommendations