Skip to main content
Log in

Toeplitz Operators for Wavelet Transform Related to the Spherical Mean Operator

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We define wavelets and wavelet transforms associated with spherical mean operator. We establish a Plancherel theorem, orthogonality property and inversion formula for the wavelet transform. Next, we define the Toeplitz operators \(\mathfrak {T}_{\varphi ,\psi }(\sigma )\) associated with two wavelets \(\varphi ,\psi \) and with symbol \(\sigma .\) We establish the boundedness and compactness of these operators. Last, we define the Schatten-von Neumann class \(S^p\ ;\ p\in \ [1,+\infty ],\) and we show that the Toeplitz operators belong to the class \(S^p\) and we prove a formula of trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, L.E.: On the determination of a function from spherical averages. SIAM. J. Math. Anal. 19(1), 214–232 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Baccar, C.: Uncertainty principles for the continuous Hankel Wavelet transform. Integral Transforms Spec. Funct. 27(6), 413–429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Berezin, F.A.: Wick and anti-Wick operators symbols. Sb. Math. 15(4), 577–606 (1971)

    Article  MATH  Google Scholar 

  • Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics 20. Walter de Gruyter, Berlin-New York (1995)

    Book  Google Scholar 

  • Catanâ, V.: Schatten-von neumann norm inequalities for two-wavelet localization operators. Fields Inst. Commun. 52, 265–278 (2007)

    MathSciNet  MATH  Google Scholar 

  • Catanâ, V.: Two-wavelet localization operators on homogeneous spaces and their traces. Integr. Equ. Oper. Theory 62, 351–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Catanâ, V.: Schatten-von Neumann norm inequalities for two-wavelet localization operators associated with \(\beta \)-Stockwell transforms. Appl Anal. 91(3), 503–515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chui, C.K.: Schatten-von Neumann Norm Inequalities for Two-Wavelet Localization Operators. Academic Press Professional Inc., San Diego (1992)

    Google Scholar 

  • Chui, C.K.: An Introduction of Wavelets. Academic Press Professional Inc., San Diego (1992)

    Book  MATH  Google Scholar 

  • Cohen, J.K., Bleistein, N.: Velocity inversion procedure for acoustic waves. Geophysics 44(6), 1077–1087 (1979)

    Article  Google Scholar 

  • Cordero, E., Gröchening, K.: Time-frequency analysis of localization operators. J. Funct Anal. 205(1), 1077–1087 (2003)

    Article  MathSciNet  Google Scholar 

  • Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Comm. Partial Differ. Equ. 3(11), 979–1005 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: Time-frequency localization operators-a geometric phase space approach: II. The use of dilations. Inverse Prob. 4(3), 661–680 (1988)

    Article  MATH  Google Scholar 

  • Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 (1992)

  • Erdélyi, A., et al.: Tables of Integral Transforms, vol. 2. Mc Graw-Hill Book Compagny, New York (1954)

    MATH  Google Scholar 

  • Erdélyi, A.: Asymptotic expansions. Dover publications, New York (1956)

    MATH  Google Scholar 

  • Fawcett, J.A.: Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45(02), 336–341 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers, Advances in Gabor Analysis, pp. 99–128. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  • Folland, G.B.: Real Analysis Modern Thechniques and Their Applications, Pure and Applied Mathematics. Wiley, New York (1984)

    Google Scholar 

  • Gröchening, K.: Foundations of Time-frequency analysis. Springer, Birkhauser (2001)

  • Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant schape. SIAM. J. Math. Anal. 15, 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • He, Z.: Spectra of Localization Operators on Groups, PhD thesis, York university Toronto, (1998)

  • Helgason, S.: The Radon Transform. Progress in Mathematics. 2nd edn. Birkhäuser, Basel (1999)

  • Hellsten, H., Andersson, L.-E.: An inverse method for the processing of synthetic aperture radar data. Inverse Probl. 3(1), 111–124 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D30430-3.2, National Defense Research Institude, FOA, Box 1165; S-581 11, Linköping, (1986)

  • Hleili, K., Omri, S.: The Littlewood Paley g-function associated with the spherical mean operator. Mediterr. J. Math. 10(2), 887907 (2013)

    MathSciNet  MATH  Google Scholar 

  • Jelassi, M., Rachdi, L.T.: On the range of the Fourier transform associated with the spherical mean operator. Fract. Calc. Anal. 7(4), 379–402 (2004)

    MathSciNet  MATH  Google Scholar 

  • Kumar, P., Foufoula-Georgiou, E.: Wavelet analysis in geophysics: an introduction. Wavelets in geophysics 4, 1–43 (1994)

    Article  MathSciNet  Google Scholar 

  • Koornwinder, T.H.: Wavelets: An Elementary Treatment of Theory and Applications. World Scientific Publishing Co. Pte. Ltd., Singapore (1993)

    Book  MATH  Google Scholar 

  • Laugesen, R.S., Weaver, N., Weiss, G.L., Wilson, E.N.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(1), 89–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedev, N.N.: Special Functions and Their Applications. Dover publications, New York (1972)

    MATH  Google Scholar 

  • Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for Time-frequency localization operators. J. Lond. Math. Soc. 65(3), 720–732 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • De Mari, F., Nowak, K.: Localization type Berezin-Toepliz. J. Geom. Anal. 2002(1), 9–27 (2002)

    Article  MATH  Google Scholar 

  • Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Msehli, N., Rachdi, L.T.: Beurling-Hörmander uncertainty principle for the spherical mean operator, J.Ineq. Pure Appl. Math., 10(2) (2009) (Art. 38)

  • Msehli, N., Rachdi, L.T.: Heisenberg-Pauli-Weyl uncertainty principle for the spherical mean operator. Mediterr. J. Math 7, 169–194 (2010). https://doi.org/10.1007/s00009-010-0044-1

    Article  MathSciNet  MATH  Google Scholar 

  • Msehli, N., Rachdi, L.T.: Best approximation for weierstrass transform connected with spherical mean operator. Acta Math. Sci. Ser. B 32(2), 455470 (2012). https://doi.org/10.1016/S0252-9602(12)60029-0

  • Nessibi, M.M., Rachdi, L.T., Trimèche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. App. 196, 861–884 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, L.Z., Zhao, J.M.: Wavelet and Weyl transforms associated with spherical mean operator. Integral Equ Oper. Theory 50, 279–290 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the spherical mean operator. Anal. Appl. 1, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Rachdi, L.T., Meherzi, F.: Continuous Wavelet Transform and Uncertainty Principle Related to the Spherical Mean Operator. Mediterr. J. Math. (2017). https://doi.org/10.1007/s00009-016-0834-1

    MathSciNet  MATH  Google Scholar 

  • Ramanathan, J., Topiwala, P.: Time-frequency localization via the Weyl coresspondence. SIAM. J. Math. Anal. 24(5), 1378–1393 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Saitoh, S.: The Weierstrass transform and an isometry in the heat equation. Appl. Anal. 16, 1–6 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Saitoh, S.: Approximate real inversion formulas of the gaussian convolution. Appl. Anal. 83(7), 727–733 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Saitoh, S.: Applications of Tikhonov regularization to inverse problems using reproducing kernels. J. Phys. Conf. Ser. 88, 012019 (2007)

    Article  Google Scholar 

  • Stein, E.M.: Interpolation of linear operator. Trans. Amer. Math. Soc. 83(2), 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University, New Jersey (1971)

    MATH  Google Scholar 

  • Trimèche, K.: Inversion of the Lions translation operator using genaralized wavelets. Appl. Comput. Harmon. Anal. 4, 97–112 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  • Trimèche, K.: Generalized wavelets and hypergroups. Gordon and Breach Science Publishers, Amsterdam (1997b)

    MATH  Google Scholar 

  • Trimèche, K.: Generalized Harmonic Analysis and Wavelet Packets: An Elementary Treatment of Theory and Applications. Gordan and Breach Science Publishers, Amsterdam (2001)

    MATH  Google Scholar 

  • Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1959)

    Google Scholar 

  • Wong, M.W.: Localization Operators, Research Institue of Mathematics Global Analysis Research Center. Seoul National University, Seoul (1999)

    Google Scholar 

  • Wong, M.W.: \(L^p\)-boundedness localization operators associeted to left regular representations. Proc. Am. Math 130, 2911–2929 (2002)

    Article  MATH  Google Scholar 

  • Wong, M.W.: Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications, vol. 136. Birkhäuser, Base (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Amri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amri, B. Toeplitz Operators for Wavelet Transform Related to the Spherical Mean Operator. Bull Braz Math Soc, New Series 49, 849–872 (2018). https://doi.org/10.1007/s00574-018-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0083-y

Keywords

Mathematics Subject Classification

Navigation