Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency

Abstract

Arbuscular mycorrhizal (AM) fungal extraradical hyphae exude their metabolites into the soil. Root exudate metabolites are affected by plant species and P status. However, the effect of P status on AM hyphal exudate metabolites has been unknown. This study aimed to examine hyphal exudate metabolite composition of two AM fungal species and their response to P deficiency through metabolite profiling. Rhizophagus clarus and R. irregularis were grown in a two-compartment in vitro culture system of Linum usitatissimum roots on solid modified Strullu-Romand medium in combination with two P levels (3 µM (P3) and 30 µM (P30)). Hyphal exudates were collected from the hyphal compartment at 118 days after inoculation (DAI). The metabolite composition of the hyphal exudates was determined by capillary electrophoresis/time-of-flight mass spectrometry, resulting in the identification of a total of 141 metabolites at 118 DAI. In the hyphal exudates of R. clarus, the concentrations of 18 metabolites, including sugars, amino acids, and organic acids, were significantly higher (p < 0.05) under P3 than under P30 conditions. In contrast, the concentrations of 10 metabolites, including sugar and amino acids, in the hyphal exudates of R. irregularis were significantly lower (p < 0.05) under P3 than under P30 conditions. These findings suggest that the extraradical hyphae of AM fungi exude diverse metabolites of which concentrations are affected by P conditions and differ between AM fungal species.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Raw data of this study are available from the corresponding author Keitaro Tawaraya on request.

References

  1. Ahonen-Jonnarth U, van Hees PAW, Lundstrom US, Finlay RD (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentration. New Phytol 146:557–567. https://doi.org/10.1046/j.1469-8137.2000.00653.x

    CAS  Article  Google Scholar 

  2. Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374. https://doi.org/10.1139/b80-038

    CAS  Article  Google Scholar 

  3. Bharadwaj DP, Alström S, Lundquist P (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447. https://doi.org/10.1007/s00572-011-0418-7

    Article  PubMed  Google Scholar 

  4. Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphusericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205:181–192. https://doi.org/10.1023/A:1004376731209

    CAS  Article  Google Scholar 

  5. Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borris R, Wiren NV (2011) Root exudation of sugar, amino acids and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11. https://doi.org/10.1002/jpln.201000085

    CAS  Article  Google Scholar 

  6. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 32:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

    CAS  Article  Google Scholar 

  7. Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585. https://doi.org/10.1080/00275514.1998.12026946

    Article  Google Scholar 

  8. Della Monica IF, Godeas AM, Scervino JM (2020) In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers. Microb Ecol 79:21–29. https://doi.org/10.1007/s00248-019-01396-6

    CAS  Article  PubMed  Google Scholar 

  9. Doner LW, Becard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28. https://doi.org/10.1007/BF00152749

    CAS  Article  Google Scholar 

  10. Edayilam N, Montgomery D, Ferguson B, Maroli AS, Martinez N, Powell BA, Tharayil N (2018) Phosphorus stress-induced changes in plant root exudation could potentially facilitate uranium mobilization from stable mineral forms. Environ Sci Technol 52:7652–7662. https://doi.org/10.1021/acs.est.7b05836

    CAS  Article  PubMed  Google Scholar 

  11. Filion M, ST-Arnaud M, Fortin JA, (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533. https://doi.org/10.1046/j.1469-8137.1999.00366.x

    Article  Google Scholar 

  12. Hodge A, Alexander IJ, Gooday GW (1995) Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi. Mycol Res 99:935–941. https://doi.org/10.1016/S0953-7562(09)80752-1

    CAS  Article  Google Scholar 

  13. Hooker JE, Piatti P, Cheshire MV, Watson CA (2007) Polysaccharides and monosaccharides in the hyphosphere of the arbuscular mycorrhizal fungi Glomus E3 and Glomus tenue. Soil BiolBiochem 39:680–683. https://doi.org/10.3389/fmicb.2016.00939

    CAS  Article  Google Scholar 

  14. Islam MK, Sano A, Majumder MSI, Sakagami JI, Gima S, Hossain MA (2019) Evaluation of organic acid production potential of phosphate solubilizing fungi isolated from soils in Okinawa, Japan. Appl Ecol Environ Res 17: 15191–15201.https://doi.org/10.15666/aeer/1706_1519115201

  15. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380. https://doi.org/10.1111/j.1469-8137.1992.tb01077.x

    CAS  Article  Google Scholar 

  16. Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712. https://doi.org/10.1111/j.1469-8137.1996.tb01939.x

    CAS  Article  Google Scholar 

  17. Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2008) Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant Soil 313:39–54. https://doi.org/10.1007/s11104-008-9678-1

    CAS  Article  Google Scholar 

  18. Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517. https://doi.org/10.1046/j.1469-8137.2000.00776.x

    CAS  Article  Google Scholar 

  19. Li X, Sun X, Wang G, Amombo E, Zhou X, Du Z, Zhang Y, Xie Y, Fu J (2019) Inoculation with Aspergillus aculeatus alters the performance of perennial ryegrass under phosphorus deficiency. J Am Soc Hortic Sci 144: 182–192. https://doi.org/10.21273/JASHS04581-1s8

  20. Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48. https://doi.org/10.1007/BF02465218

    Article  Google Scholar 

  21. Martin-Rodriguez JA, Leon-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Muller J, Garcia-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205. https://doi.org/10.1111/j.1469-8137.2010.03610.x

    CAS  Article  PubMed  Google Scholar 

  22. Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP (2015) The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytol 205:1164–1174. https://doi.org/10.1111/nph.13122

    CAS  Article  PubMed  Google Scholar 

  23. Miller RM, Jastrow JD, Reinhardt DR (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23. https://doi.org/10.1007/BF00328420

    CAS  Article  PubMed  Google Scholar 

  24. Miller SB, Heuberger AL, Broeckling CD, Jahn CE (2019) Non-targeted metabolomics reveals sorghum rhizosphere-associated exudates are influenced by the below ground interaction of substrate and sorghum genotype. Int J Mol Sci 20:431. https://doi.org/10.3390/ijms20020431

    CAS  Article  PubMed Central  Google Scholar 

  25. Oldroyd GED (2013) Speak, friend and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263. https://doi.org/10.1038/nrmicro2990

    CAS  Article  PubMed  Google Scholar 

  26. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillums pp. Naturwissenschaften 91:552–555. https://doi.org/10.1007/s00114-004-0566-0

    CAS  Article  PubMed  Google Scholar 

  27. Sato T, Hachiya S, Inamura N, Ezawa T, Cheng W, Tawaraya K (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 29:599–605. https://doi.org/10.1007/s00572-019-00923-0

    CAS  Article  PubMed  Google Scholar 

  28. Sato T, Ezawa T, Cheng W, Tawaraya K (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. J Soil Sci Plant Nutr 61:269–274. https://doi.org/10.1080/00380768.2014.993298

    CAS  Article  Google Scholar 

  29. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332. https://doi.org/10.1016/S0953-7562(96)80164-X

    Article  Google Scholar 

  30. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62(6):817–836. https://doi.org/10.1016/s0031-9422(02)00708-2

    CAS  Article  PubMed  Google Scholar 

  31. Sung J, Lee S, Lee Y, Ha S, Song B, Kim T, Waters BM, Krishnan HB (2015) Metabolic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium deficient condition. Plant Sci 241:55–64. https://doi.org/10.1016/j.plantsci.2015.09.027

    CAS  Article  PubMed  Google Scholar 

  32. Tawaraya K, Horie R, Wagatsuma T, Saito K, Oikawa A (2018) Metabolite profiling of shoot extract, root extract, and root exudate of rice under nitrogen and phosphorus deficiency. J Soil Sci Plant Nutr 64:312–322. https://doi.org/10.1080/00380768.2018.1476828

    CAS  Article  Google Scholar 

  33. Tawaraya K, Horie R, Saito K, Wagatsuma T, Saito K, Oikawa A (2014) Metabolite profiling of root exudates of common bean under phosphorus deficiency. Metabolites 4:599–611. https://doi.org/10.3390/metabo4030599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Oikawa A (2014) Metabolite profiling of soybean root exudates under phosphorus deficiency. J Soil Sci Plant Nutr 60:679–694. https://doi.org/10.1080/00380768.2014.945390

    CAS  Article  Google Scholar 

  35. Tawaraya K, Horie R, Saito A, Shinano T, Wagatsuma T, Saito K, Oikawa A (2013) Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. J Plant Nutr 36:1138–1159. https://doi.org/10.1080/01904167.2013.780613

    CAS  Article  Google Scholar 

  36. Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665. https://doi.org/10.1080/01904160600564428

    CAS  Article  Google Scholar 

  37. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40. https://doi.org/10.1111/j.1574-6968.2005.00003.x

    CAS  Article  PubMed  Google Scholar 

  38. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304. https://doi.org/10.1111/j.1574-6941.2007.00337.x

    CAS  Article  PubMed  Google Scholar 

  39. Toro M, Azcón R, Barea J (1997) Improvement of arbuscular mycorrhizal development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavaiability (32P) and nutrient cycling. Appl Eniviron Microbiol 63:4408–4412. https://doi.org/10.1128/AEM.63.11.4408-4412.1997

    CAS  Article  Google Scholar 

  40. Van Hees PAW, Rosling A, Essen S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–378. https://doi.org/10.1111/j.1469-8137.2005.01600.x

    CAS  Article  PubMed  Google Scholar 

  41. Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can J Bot 79:865–870. https://doi.org/10.1139/b01-069

    CAS  Article  Google Scholar 

  42. Witzel K, Strehmel N, Baldermann S, Neugart S, Becker Y, Becker M, Berger B, Scheel D, Grosch R, Schreiner M, Ruppel S (2017) Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T. Plant Soil 419:557–573. https://doi.org/10.1007/s11104-017-3371-1

    CAS  Article  Google Scholar 

  43. Wu M, Wei Q, Xu L, Li H, Oelmüller R, Zhang W (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 432:333–344. https://doi.org/10.1007/s11104-018-3795-2

    CAS  Article  Google Scholar 

  44. Yang C, Zhao W, Wang Y, Zhang L, Huang S, Lin J (2020) Metabolomics analysis reveals the alkali tolerance mechanis in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi. Microorganism 8:327. https://doi.org/10.3390/microorganisms8030327

    CAS  Article  Google Scholar 

  45. Zhang L, Peng Y, Zhou J, George TS, Feng Gu (2020) Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil BiolBiochem 142(107724):1–9. https://doi.org/10.1016/j.soilbio.2020.107724

    CAS  Article  Google Scholar 

  46. Zhang L, Fan J, Feng G, Declerck S (2018) The arbuscularmycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2. Mycorrhiza 29:69–75. https://doi.org/10.1007/s00572-018-0871-7

    CAS  Article  PubMed  Google Scholar 

  47. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phospahate-solybilizing bacterium. New Phytol 210:1022–1032. https://doi.org/10.1111/nph.13838

    CAS  Article  PubMed  Google Scholar 

  48. Zhou Y, Neuhäuser B, Neumann G, Ludewig U (2020) LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. Plant Cell Environ 43:1691–1706. https://doi.org/10.1111/pce.13762

    CAS  Article  PubMed  Google Scholar 

  49. Ziegler J, Schmidt S, Chutia R, Muller J, Bottcher C, Strehmel N, Scheel D, Abel S (2016) Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J Exp Bot 67:1421–1432. https://doi.org/10.1093/jxb/erv539

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI Grant Numbers JP15K07332 and JP18K05368.

Author information

Affiliations

Authors

Contributions

NL, NI, Tantriani, TS and KT designed the study and performed the experiments. NL, NI, Tantriani, TS AO, WC, and KT analyzed the data. NL and KT wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Keitaro Tawaraya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luthfiana, N., Inamura, N., Tantriani et al. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza (2021). https://doi.org/10.1007/s00572-020-01016-z

Download citation

Keywords

  • Arbuscular mycorrhizal fungus
  • Hyphal exudate
  • Metabolite profiling
  • Phosphorus deficiency
  • Monoxenic culture