Skip to main content
Log in

Rhizophagus intraradices promotes alfalfa (Medicago sativa) defense against pea aphids (Acyrthosiphon pisum) revealed by RNA-Seq analysis

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Pea aphids (Acyrthosiphon pisum) are one of the most important insect pests of alfalfa (Medicago sativa). Arbuscular mycorrhizal (AM) fungi are important microorganisms of the agroecosystem that promote plant growth and improve plant resistance to abiotic and biotic stress. Little information is available on AM fungi-regulated defense responses of alfalfa to pea aphids. To better understand how alfalfa responds and to evaluate the impact of an AM fungus on aphid infestation, transcriptome sequencing was done and physiological parameters were analyzed. Our experiments showed that Rhizophagus intraradices can regulate plant response to aphids by promoting growth and increasing plant peroxidase (POD) and catalase (CAT) activities and salicylic acid (SA) concentration after aphid infestation. Transcriptome analysis showed that R. intraradices increased the expression of resistance-related genes, such as “WRKY transcription factor” and “Kunitz trypsin inhibitor.” Additionally, GO terms “chitinase activity,” “peroxidase activity,” “defense response,” and “response to biotic stimulus,” and KEGG pathways “phenylpropanoid biosynthesis” and “phenylalanine metabolism” were significantly enriched in mycorrhizal fungus-inoculated plants and aphid-infested plants. These findings will improve our understanding about the impact of this AM fungus on alfalfa response to aphid feeding and will provide the basis for further research on plant defense against aphids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atamian HS, Eulgem T (2012) SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235(2):299–309

    CAS  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16(6):835–843

    PubMed  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plantarum 97(1):104–110

    CAS  Google Scholar 

  • Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Marroni F, Bonfante P (2017) Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza 27(5):417–430

    CAS  PubMed  Google Scholar 

  • Bastías DA, Alejandra M-GM, Newman JA, Card SD, Mace WJ, Gundel PE (2017) The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. Plant Cell Environ 41(2)

    Google Scholar 

  • Brault V, Uzest M, Monsion B, Jacquot E, Blanc S (2010) Aphids as transport devices for plant viruses. C R Biol 333(6):524–538

    PubMed  Google Scholar 

  • Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q (2017) Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) as revealed by RNA-Seq analysis. Front Plant Sci 8:2039

    PubMed  PubMed Central  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7(2):77–84

    CAS  PubMed  Google Scholar 

  • Ding W, Fang W, Shi S, Zhao Y, Li X, Xiao K (2016) Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Bio Rep 34(6):1–16

    CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-Induced Phenylpropanoid Metabolism. Plant Cell 7(7):1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    CAS  PubMed  Google Scholar 

  • Dong YJ, Chen WF, He MR (2018) Effects of slow release exogenous nitric oxide and slow release salicylic acid on physiological characteristics of winter wheat under salt stress. Chin J Soil Sci 49(03):623–629

    Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17(5):507–523

    CAS  Google Scholar 

  • Gange AC, West HM (2010) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128(1):79–87

    Google Scholar 

  • Gange AC, Stagg PG, Ward LK (2010) Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett 5(1):11–15

    Google Scholar 

  • Gao P, Li Y, Guo Y, Duan T (2018) Co-inoculation of lucerne (Medicago sativa) with an AM fungus and a rhizobium reduces occurrence of spring black stem and leaf spot caused by Phoma medicaginis. Crop Pasture Sci 69(9):933–943

    Google Scholar 

  • Giovannetti M, Mosse B (2010) An evaluation of techniques for measuring vesicular-arbuscular mycorrbizal infection of roots. New Phytol 84(3):489–500

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Wei H, Wang H, Su J, Yu S (2018) Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutumL.). BMC Genet 19(1):48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee D (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Inte 4(1):45–55

    Google Scholar 

  • Hammerschmidt R (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20(1):73 IN9,77–76,IN10,82

    CAS  Google Scholar 

  • Harmon JP, Moran NA, Ives AR (2009) Species response to environmental change: impacts of food web interactions and evolution. Science 323(5919):1347–1350

    CAS  PubMed  Google Scholar 

  • Hartley SW, Mullikin JC (2015) QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. Bmc Bioinformatics 16(1):224

    PubMed  PubMed Central  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SF, Chang KF, Chakravarty P (1992) Effects of vesicular-arbuscular mycorrhizal fungi on the development of verticillium and fusarium wilts of alfalfa. Plant Dis 76(3):239

    Google Scholar 

  • Jih PJ, Chen YC, Jeng ST (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol 132(1):381–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Google Scholar 

  • Karley AJ, Emslie-Smith M, Bennett AE (2017) Potato aphid Macrosiphum euphorbiae performance is determined by aphid genotype and not mycorrhizal fungi or water availability. Insect Sci 24(6):1015–1024

    CAS  PubMed  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39(3):727–734

    CAS  Google Scholar 

  • Kim K, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142(3):1180–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SI, Lee SH, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breeding 5(1):1–9

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinformatics 12(1):323–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Song A, Gao C, Jiang J, Chen S, Fang W, Zhang F, Chen F (2015) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol Bioch 95:26–34

    CAS  Google Scholar 

  • Li XX, Wang LH, Gao LL, Zhang JS (2017) Effects of exogenous salicylic acid on hormone contents and growth characteristics of cotton seedlings under salt stress. Agr Res Arid Area 35:216–222

    Google Scholar 

  • Li F, Guo YE, Christensen MJ, Gao P, Li YD, Duan TY (2018) An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28(16):159–169

    PubMed  Google Scholar 

  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164(8):969–979

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mai VC, Tran NT, Nguyen DS (2016) The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Arthropod-Plant Inte 10(4):283–292

    Google Scholar 

  • Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146(3):888–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merzendorfer H (2013) Insect-derived chitinases. Adv Biochem Eng Biotechnol 136:19–50

    CAS  PubMed  Google Scholar 

  • Meyer J, Murray SL, Berger DK (2016) Signals that stop the rot: regulation of secondary metabolite defences in cereals. Physiol Mol Plant P 94:156–166

    CAS  Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2015) Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediat 18(7):697–703

    Google Scholar 

  • Mo Y, Gong D, Liang G, Han R, Xie J, Li W (2008) Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storage. J Sci Food Agr 88(15):2693–2699

    CAS  Google Scholar 

  • Prochaska TJ, Donze-Reiner T, Marchi-Werle L, Palmer NA, Hunt TE, Sarath G, Heng-Moss T (2015) Transcriptional responses of tolerant and susceptible soybeans to soybean aphid ( Aphis glycines Matsumura) herbivory. Arthropod-Plant Inte 9(4):347–359

    Google Scholar 

  • Qin Q (2007) Molecular cloning and characterization of transcription factors involved in lignin biosynthetic pathway and phenylpropanoid pathway in Ginkgo bilobal. Fudan University, Shang hai

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Bioch 42(11):899–906

    CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QXJ (2010) WRKY transcription factors. Trend Plant Sci 15(5):247–258

    CAS  Google Scholar 

  • Seye F, Bawin T, Boukraa S, Zimmer JY, Ndiaye M, Delvigne F, Francis F (2014) Effect of entomopathogenic Aspergillus strains against the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Appl Entomol Zool 49(3):453–458

    Google Scholar 

  • Shu B, Li WC, Liu LQ, Wei YZ, Shi SY (2016) Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling. Front Microbiol 7:408

    PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis (Third Edition). Academic, Longdon

    Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS (2013) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39(7):1036–1044

    PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Serio CD, Maserti B, Guerrieri E, Balestrini R (2018) The association with two different arbuscular mycorrhizal fungi differently affects the water stress tolerance in tomato. Front Plant Sci 9:1480

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2011) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351(1–2):107–119

    Google Scholar 

  • Wang H, Cui K, Shao S, Liu J, Chen H, Wang C, Wu H, Yang Z, Lu Q, Kingjones K (2017) Molecular response of gall induction by aphid Schlechtendalia chinensis (Bell) attack on Rhus chinensis Mill. J Plant Interact 12(1):465–479

    CAS  Google Scholar 

  • Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S (2014) Gene expression profiles responses to aphid feeding in chrysanthemum ( Chrysanthemum morifolium ). BMC Genomics 15(1):1–16

    Google Scholar 

  • Yang SS, Tu ZJ, Cheung F, Xu WW, Gronwald JW (2011) Using rna-seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 12(1):199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5):284–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Wang MY, Li XP, Wang XT, Jia CL, Yang XZ, Feng RQ, Yuan ML (2018a) A small set of differentially expressed genes was associated with two color morphs in natural populations of the pea aphid Acyrthosiphon pisum. Gene 651:23–32

    CAS  PubMed  Google Scholar 

  • Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018b) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crop Prod 117:13–19

    CAS  Google Scholar 

  • Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC, Sun G, Zhang C, Li J, Song D, Wu J (2018) Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol 218:1586–1596

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by China Modern Agriculture Research System (CARS-22 Green Manure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyu Duan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

ESM 2

(DOCX 2422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Nan, Z. & Duan, T. Rhizophagus intraradices promotes alfalfa (Medicago sativa) defense against pea aphids (Acyrthosiphon pisum) revealed by RNA-Seq analysis. Mycorrhiza 29, 623–635 (2019). https://doi.org/10.1007/s00572-019-00915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00915-0

Keywords

Navigation