Skip to main content

Advertisement

Log in

Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ectomycorrhizal (ECM) symbiosis is essential for the survival of both host trees and associated ECM fungi. However, during conservation activities of endangered tree species, their ECM symbionts are largely ignored. Here, we investigated ECM fungi in ex situ populations established for the conservation of Pinus amamiana, an endangered species distributed on Yakushima Island, Japan. Our objective was to determine whether ECM fungi in natural forests are conserved in ex situ populations on the same island. In particular, we focused on the existence of Rhizopogon yakushimensis, which is specific to P. amamiana and the most dominant in natural P. amamiana forests. Molecular identification of ECM fungi in resident tree roots and soil propagule banks indicated that ECM fungal species native to natural forests were rarely conserved in ex situ populations. Furthermore, R. yakushimensis was not confirmed in any of the resident root or spore bioassay samples from the ex situ populations. Thus, ECM fungal spores may not be effectively dispersed from natural forests located on the same island. Instead, ECM fungi distributed in other geographical regions occurred more frequently in the ex situ populations, indicating unintentional introductions of non-native ECM fungi from the nurseries where seedlings were raised before transplanting. These findings imply that the current ex situ conservation practices of endangered tree do not work for the conservation of native ECM fungi, and instead may need modification to avoid the risk of introducing non-native ECM fungi near the endangered forest sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Bahram M, Polme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24:1–16

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integ Comp Biol 42:352–359

    Article  Google Scholar 

  • Buscardo E, Freitas H, Pereira JS, De Angelis P (2011) Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest. Mycorrhiza 21:549–558

    Article  PubMed  Google Scholar 

  • Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:1–11

    Article  Google Scholar 

  • Chigira O (2014) Conservation of Pinus amamiana Koidz. as a case of gene conservation in Kyusyu district Japan (in Japanese). J Tree Health 18:6–13

    Google Scholar 

  • Colwell R (2009) EstimateS: statistical estimation of species richness and shared species from samples. Retrieved from http://viceroy.eeb.uconn.edu/estimates. Accessed 7 Sept 2019

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion of Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • El Karkouri K, Martin F, Emmanuel Douzery JP, Mousain D (2005) Diversity of ectomycorrhizal fungi naturally established on containerised Pinus seedlings in nursery conditions. Microbiol Res 160:47–52

    Article  PubMed  Google Scholar 

  • Fahselt D (2007) Is transplanting an effective means of preserving vegetation? Can J Bot 85:1007–1017

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Timling I, Robinson CH, Lennon N, Nusbaum HC, Brochmann C, Noordeloos ME, Taylor DL (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA: biodiversity of arctic ectomycorrhizal fungi. J Biogeogr 39:74–88

    Article  Google Scholar 

  • Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J 10:1228–1239

    Article  PubMed  Google Scholar 

  • Grubisha LC, Bergemann SE, Bruns TD (2007) Host islands within the California Northern Channel Islands create fine-scale genetic structure in two sympatric species of the symbiotic ectomycorrhizal fungus Rhizopogon: RHIZOPOGON HOST ISLANDS. Mol Ecol 16:1811–1822

    Article  PubMed  Google Scholar 

  • Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Griffith GW, Nordén J, Ovaskainen O, Perini C, Senn-Irlet B, Halme P (2015) A fungal perspective on conservation biology: Fungi and conservation biology. Conserv Biol 29:61–68

    Article  PubMed  Google Scholar 

  • Huang J, Nara K, Zong K, Lian C (2015) Soil propagule banks of ectomycorrhizal fungi along forest development stages after mining. Microb Ecol 69:768–777

    Article  CAS  PubMed  Google Scholar 

  • IUCN (International Union for Conservation of Nature) (2018a) Numbers of threatened species by major groups of organisms (1996–2018). http://cmsdocs.s3.amazonaws.com/summarystats/2018-1_Summary_Stats_Page_Documents/2018_1_RL_Stats_Table_1.pdf. Accessed 6 October 2018

  • IUCN (International Union for Conservation of Nature) (2018b) Red list criteria summary sheet. https://www.iucnredlist.org/resources/summary-sheet. Accessed 24 October 2018

  • Iwański M, Rudawska M, Leski T (2006) Mycorrhizal associations of nursery grown Scots pine (Pinus sylvestris L.) seedlings in Poland. Ann For Sci 63:715–723

    Article  Google Scholar 

  • Kanetani S, Kawahara T, Kanazashi A, Yoshimaru H (2004) Diversity and conservation of genetic resources of an endangered five-needle Pine species, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima. USDA Forest Service Proceedings; RMRS-P-32:188–191

  • Kanetani S, Gyokusen K, Ito S, Saito A (2010) The floristic composition of Pinus armandii var. amamiana forests on Yaku-shima Island, southwestern Japan (in Japanese). Res Bull Kagoshima Univ For 37:49–61

    Google Scholar 

  • Kasuga T, White TJ, Taylor JW (2002) Estimation of nucleotide substitution rates in Eurotiomycete fungi. Mol Biol Evol 19:2318–2324

    Article  CAS  PubMed  Google Scholar 

  • Katsuki T, Farjon A (2013) Pinus amamiana. The IUCN Red List of Threatened Species 2013: e.T34180A2849479. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34180A2849479.en

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lonergan ER, Cripps CL, Smith CM (2014) Influence of site conditions, shelter objects, and ectomycorrhizal inoculation on the early survival of whitebark pine seedlings planted in Western Lakes National Park. For Sci 60:603–612

    Google Scholar 

  • Ministry of the Environment (2018) Red List of Threatened Plants of Japan. https://www.env.go.jp/press/files/jp/109278.pdf. Accessed 6 October 2018

  • Miyamoto Y, Narimatsu M, Nara K (2018) Effects of climate, distance, and a geographic barrier on ectomycorrhizal fungal communities in Japan: a comparison across Blakiston’s line. Fungal Ecol 33:125–133

    Article  Google Scholar 

  • Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus, Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol 126:653–675

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community ecological consequences and practical applications. In: Allen A (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–422

    Google Scholar 

  • Murata M, Nara K (2017) Ectomycorrhizal fungal communities at different soil depths in a forest dominated by endangered Pseudotsuga japonica. J Jpn For Soc 99:195–201

    Article  Google Scholar 

  • Murata M, Nagata Y, Nara K (2017a) Soil spore banks of ectomycorrhizal fungi in endangered Japanese Douglas-fir forests. Ecol Res 32:469–479

    Article  Google Scholar 

  • Murata M, Kanetani S, Nara K (2017b) Ectomycorrhizal fungal communities in endangered Pinus amamiana forests. PLoS One 12:e0189957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Akiba M, Kanetani S (2001) Pine wilt disease as promising causal agent of the mass mortality of Pinus armandii Franch. var. amamiana (Koidz.) Hatusima in the field. Ecol Res 16:795–801

    Article  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707

    Article  Google Scholar 

  • Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  Google Scholar 

  • Nguyen NH, Vellinga EC, Bruns TD, Kennedy PG (2016) Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa. Mycologia 108:1216–1228

    PubMed  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Ono M, Oba H, Nishida M (1989) Makino’s new illustrated flora of Japan, revised edn. (in Japanese). Hokuryukan, Tokyo

  • Osawa M, Tgawa H, Yamagiwa J (2007) A world heritage, Yakushima-the nature and the ecosystem in subtropics-2nd edn. (in Japanese). Asakura Publishing Co., Ltd, Shinjuku

    Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Shiozaki M, Ishi M, Nishimura K, Fuyuno S (2005) After the emergency project for propagation and restoration of Pinus amamiana (in Japanese). For Tree Breeding 215:34–42

    Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Sugiyama Y, Murata M, Nara K (2018) A new Rhizopogon species associated with Pinus amamiana in Japan. Mycoscience 59:176–180

    Article  Google Scholar 

  • Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sanchez G, Schröck HW, Schubert A, Verheyen K, Verrtraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99

    Article  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Jairus T, Bechem E, Chinoya S, Mpumba R, Leal M, Randrianjohany E, Razafimandimbisom S, Sadam A, Naadel T, Kõljalg U (2011) Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar. Mol Ecol 20:3071–3080

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, DiéDhiou AG, Henkel TW, KjøLler R, Morris MH, Nara K, Nouhra E, Peay KG, PõLme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–884

    Article  CAS  PubMed  Google Scholar 

  • Urcelay C, Longo S, Geml J, Tecco PA, Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal Ecol 25:50–58

    Article  Google Scholar 

  • Vincenot L, Nara K, Sthultz C, Labbé J, Dubois MP, Tedersoo L, Martin F, Selosse MA (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex: EURASIAN POPULATION GENETICS OF LACCARIA AMETHYSTINA. Mol Ecol 21:281–299

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Murata M, Xu Z, Chen Y, Nara K (2015) Ectomycorrhizal fungal communities on the endangered Chinese Douglas-fir (Pseudotsuga sinensis) indicating regional fungal sharing overrides host conservatism across geographical regions. Plant Soil 387:189–199

    Article  CAS  Google Scholar 

  • Wen Z, Shi L, Tang Y, Hong L, Xue J, Xing J, Chen Y, Nara K (2018) Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. Mycorrhiza 28:49–58

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DM, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wu QX, Mueller GM, Lutzoni FM, Huang YQ, Guo SY (2000) Phylogenetic and biogeographic relationships of eastern Asian and eastern North American disjunct Suillus species (Fungi) as inferred from nuclear ribosomal RNA ITS sequences. Mol Phylogenetics Evol 17:37–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kenshi Tetsuka and Toshihiro Saito for supporting our field survey and providing information about Pinus amamiana; and Helbert at the University of Tokyo for helping with the field sampling; Yakushima Forest Ecosystem Conservation Center for the permissions of field sampling.

Funding

This work was supported in part by Japan Society for the Promotion of Science KAKENHI grants (grant nos. 26870163, 15H02449, and 18H03955) and by the Institute for Fermentation, Osaka (grant no. L-2018-1-006) to K.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoriko Sugiyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 80 kb)

ESM 2

(DOCX 134 kb)

ESM 3

(XLSX 12 kb)

ESM 4

(XLSX 17 kb)

ESM 5

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, Y., Murata, M., Kanetani, S. et al. Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ. Mycorrhiza 29, 195–205 (2019). https://doi.org/10.1007/s00572-019-00887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00887-1

Keywords

Navigation