, Volume 28, Issue 7, pp 577–586 | Cite as

The continuing relevance of “older” mycorrhiza literature: insights from the work of John Laker Harley (1911–1990)

  • Roger T. KoideEmail author
  • Christopher W. Fernandez
Original Article


To new generations of scientists beginning their careers in research, we strongly recommend the practice of reading older literature. To illustrate the value of doing so, we highlight six insights of one of the most influential mycorrhiza researchers of the twentieth century, Jack Harley. These insights concerning mycotrophy, the new niche, the sheath, C cycling, N cycling, and mutualism were published prior to 1975 and so may have escaped the notice of many, but they laid the groundwork for some of the most important research of today.


Mycotrophy Niche Sheath Mutualism C cycling N cycling 



We thank the planning committee of the 9th International Conference on Mycorrhiza and, particularly, Jan Jansa for inviting us to present this paper. We also thank two anonymous reviewers for their valuable comments. Roger Koide received funding from Brigham Young University.


  1. Abuzinadah R, Read D (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506CrossRefGoogle Scholar
  2. Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553CrossRefGoogle Scholar
  3. Chen W, Koide RT, Adams TS, Deforest JL, Cheng L, Eissenstat D (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. PNAS 113(31):8741–8746CrossRefGoogle Scholar
  4. Chen W, Eissenstat DM, Koide RT (2018) Root diameter predicts the extramatrical hyphal exploration distance of the ectomycorrhizal fungal community. Ecosphere 9. CrossRefGoogle Scholar
  5. Cheng L, Chen W, Adams TS, Wei X, Li L, McCormack ML, DeForest JL, Koide RT, Eissenstat DM (2016) Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97:2815–2823. CrossRefPubMedGoogle Scholar
  6. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618CrossRefGoogle Scholar
  7. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. CrossRefPubMedGoogle Scholar
  8. Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135. CrossRefGoogle Scholar
  9. Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366(1–2):1–27CrossRefGoogle Scholar
  10. Fernandez CW, Kennedy PG (2015) Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394CrossRefGoogle Scholar
  11. Fernandez CW, Kennedy PG (2018) Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol 106:468–479CrossRefGoogle Scholar
  12. Fernandez CW, Koide RT (2012) The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology 93(1):24–28CrossRefGoogle Scholar
  13. Fernandez CW, Koide RT (2014) Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157CrossRefGoogle Scholar
  14. Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12(3):406–412. CrossRefGoogle Scholar
  15. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133CrossRefGoogle Scholar
  16. Garrett SD (1950) Ecology of root-inhabiting fungi. Biol Rev 25:220–254CrossRefGoogle Scholar
  17. Gray TRG, Williams ST (1971) Microbial productivity in the soil. In: Hughes AH, Rose AA (eds) Microbes and biological productivity. Cambridge University Press, pp. 255–286Google Scholar
  18. Harley JL (1949) Mycorrhiza. Nature 164:1041–1042CrossRefGoogle Scholar
  19. Harley JL (1952) Associations between microorganisms and higher plants (mycorrhiza). Annu Rev Microbiol 6:367–386CrossRefGoogle Scholar
  20. Harley JL (1969) The Biology of mycorrhiza, second edition. Plant science monographs, Ed. N. Polunin. Leonard Hill, LondonGoogle Scholar
  21. Harley JL (1975) Problems of mycotrophy. In: endomycorrhizas. Proceedings of a symposium held at University of Leeds, 22–25 July 1974. Academic Press, LondonGoogle Scholar
  22. Harley JL (1989) Concluding address. Agric Ecosyst Environ 29:457–461CrossRefGoogle Scholar
  23. Hasselquist NJ, Metcalfe DB, Inselsbacher E, Stangl Z, Oren R, Näsholm T, Högberg P (2016) Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97:1012–1022. CrossRefPubMedGoogle Scholar
  24. Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508. CrossRefPubMedGoogle Scholar
  25. Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154(3):791–795CrossRefGoogle Scholar
  26. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135(4):575–585CrossRefGoogle Scholar
  27. Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109. CrossRefGoogle Scholar
  28. Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89(4):1032–1042CrossRefGoogle Scholar
  29. Koide R, Kabir Z (2001) Nutrient economy of red pine is affected by interactions between Pisolithus tinctorius and other forest-floor microbes. New Phytol 150(1):179–188CrossRefGoogle Scholar
  30. Koide RT, Wu T (2003) Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytol 158:401–407. CrossRefGoogle Scholar
  31. Koide RT, Sharda JN, Herr JR, Malcolm GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233CrossRefGoogle Scholar
  32. Koide RT, Fernandez CW, Peoples MS (2011) Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytol 191(2):508–514CrossRefGoogle Scholar
  33. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. CrossRefGoogle Scholar
  34. Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD (2017) Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett 20:1546–1555. CrossRefGoogle Scholar
  35. Lenaers M, Reyns W, Czech J, Carleer R, Basak I, Deferme W, Krupinska P, Yildiz T, Saro S, Remans T, Vangronsveld J, de Laender F, Rineau F (2018) Links between heathland fungal biomass mineralization, melanization, and hydrophobicity. Microb Ecol. CrossRefGoogle Scholar
  36. Lewis DH (1975) Comparative aspects of the carbon nutrition of mycorrhizas. In: Endomycorrhizas. Proceedings of a symposium held at University of Leeds, 22–25 July 1974. Academic Press, LondonGoogle Scholar
  37. Lindahl BD, Tunlid A (2014) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205(205):1443–1447PubMedGoogle Scholar
  38. Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. CrossRefGoogle Scholar
  39. Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221. CrossRefPubMedGoogle Scholar
  40. Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502. CrossRefGoogle Scholar
  41. Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant Soil 71(1–3):415–443CrossRefGoogle Scholar
  42. Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J 7(10):2010–2022CrossRefGoogle Scholar
  43. Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369(6475):58–60CrossRefGoogle Scholar
  44. Sanders FE, Tinker PB (1973) Phosphate flow in mycorrhizal roots. Pestic Sci 4:388–395CrossRefGoogle Scholar
  45. Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038.[1029:SARTBM]2.0.CO;2CrossRefGoogle Scholar
  46. Siletti CE, Zeiner CA, Bhatnagar JM (2017) Distributions of fungal melanin across species and soils. Soil Biol Biochem 113:285–293. CrossRefGoogle Scholar
  47. Smith D, Lewis D (1994) John Laker Harley. 17 November 1911 - 13 December 1990. Biogr Mem Fellows R Soc 39:158–175CrossRefGoogle Scholar
  48. Smith GR, Finlay RD, Stenlid J, Vasaitis R, Menkis A (2017) Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytol 215:747–755. CrossRefPubMedGoogle Scholar
  49. Song YY, Simard SW, Carroll A, Mohn WW, Zeng RS (2015) Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci Rep 5:1–9. CrossRefGoogle Scholar
  50. Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174(2):441–446CrossRefGoogle Scholar
  51. Wang T, Tian Z, Bengtson P, Tunlid A, Persson P (2017) Mineral surface-reactive metabolites secreted during fungal decomposition contribute to the formation of soil organic matter. Environ Microbiol 19:5117–5129. CrossRefPubMedGoogle Scholar
  52. Wiemken V, Boller T (2002) Ectomycorrhiza: gene expression, metabolism and the wood-wide web. Curr Opin Plant Biol 5(4):355–361. CrossRefPubMedGoogle Scholar
  53. Wu B (2014) Visualization of nutrient translocation in ectomycorrhizal symbioses. Botany 133:129–133. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyBrigham Young UniversityProvoUSA
  2. 2.Department of Plant BiologyUniversity MinnesotaSt PaulUSA

Personalised recommendations