, Volume 28, Issue 7, pp 605–619 | Cite as

Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau

  • Xiaoliang LiEmail author
  • Meng Xu
  • Peter Christie
  • Xiaolin Li
  • Junling Zhang
Original Article


Understanding the diversity and community structure of arbuscular mycorrhizal fungi (AMF) in extreme conditions is fundamental to predict the occurrence and evolution of either symbiotic partner in alpine ecosystems. We investigated the AMF associations of three plant species at elevations ranging between 3105 and 4556 m a.s.l. on Mount Segrila on the Tibetan Plateau. Three of four locations were studied in two consecutive years. The AMF diversity and community composition in the roots of Carex pseudofoetida, Pennisetum centrasiaticum, and Fragaria moupinensis differed little. However, at high elevations, the abundance of members of Acaulosporaceae increased relative to that of Glomeraceae. Plants at lower elevation sites, where Glomeraceae predominated as root symbionts, had higher leaf nitrogen and phosphorus concentrations than plants at higher elevation sites, where Acaulosporaceae predominated. The overall phylogenetic relatedness of the AMF increased with increasing elevation. This suggests that abiotic filtering may play an important role in the structuring of symbiotic AMF communities along elevational gradients. The functional role of Acaulosporaceae whose relative abundance was found to increase with elevation in alpine environments needs to be clarified in future studies.


Arbuscular mycorrhizal fungi Montane and alpine grasslands Preferential symbiotic association Diversity Elevation 



We are grateful to the anonymous reviewers for their very helpful comments and suggestions on an earlier version of the manuscript.


This work was funded by the Inter-Governmental International Science and Technology Innovation Cooperation (S2016G0053), the National Natural Science Foundation of China (Grant Nos. 31272251 and 31421092), and Hainan Provincial Natural Science Foundation of China (20163125).

Supplementary material

572_2018_850_MOESM1_ESM.doc (17.7 mb)
ESM 1 (DOC 18148 kb)


  1. Adler PB, Seabloom EW, Borer ET et al (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753. CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  3. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co–occurrence patterns in soil microbial communities. ISME J 6:343–351. CrossRefGoogle Scholar
  4. Becklin KM, Hertweck KL, Jumpponen A (2012) Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb Ecol 63:682–693. CrossRefPubMedGoogle Scholar
  5. Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21. CrossRefPubMedGoogle Scholar
  6. Bouffaud ML, Bragalini C, Berruti A, Peyret-Guzzon M, Voyron S, Stockinger H, Tuinen D, Lumini E, Wipf D, Plassart P, Lemanceau P, Bianciotto V, Redecker D, Girlanda M (2017) Arbuscular mycorrhizal fungal community differences among European long-term observatories. Mycorrhiza 27:331–343. CrossRefPubMedGoogle Scholar
  7. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cambardella CA, Gajda AM, Doran JW, Wienhold BJ, Kettler TA (2001) Estimation of particulate and total organic matter by weight loss on ignition. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publishers, Boca Raton, FLGoogle Scholar
  9. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait–based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. CrossRefGoogle Scholar
  10. Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381. CrossRefGoogle Scholar
  11. Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25:627–638. CrossRefPubMedGoogle Scholar
  12. Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209. CrossRefPubMedGoogle Scholar
  13. Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In Methods and Principles of Mycorrhizal Research. Schenck, N.C. (ed.). St. Paul, MN: American Phytopathological. Society:29–35Google Scholar
  14. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. CrossRefGoogle Scholar
  15. De Caceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. CrossRefGoogle Scholar
  16. Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. CrossRefPubMedGoogle Scholar
  17. Egan CP, Callaway RM, Hart MM, Pither J, Klironomos J (2017) Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient. Mycorrhiza 27:273–282. CrossRefPubMedGoogle Scholar
  18. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. CrossRefGoogle Scholar
  19. Gai JP, Cai XB, Feng G, Christie P, Li XL (2006) Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza 16:151–157. CrossRefPubMedGoogle Scholar
  20. Gai JP, Tian H, Yang FY, Christie P, Li XL, Klironomos JN (2012) Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55:145–151. CrossRefGoogle Scholar
  21. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102. CrossRefGoogle Scholar
  22. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. CrossRefGoogle Scholar
  23. Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:418–423. doi: CrossRefGoogle Scholar
  24. Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183:1188–1200. CrossRefGoogle Scholar
  25. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood–wide web? Nature 394:431. CrossRefGoogle Scholar
  26. Helgason T, Feng H, Sherlock DJ, Young JPW, Fitter AH (2014) Arbuscular mycorrhizal communities associated with maples (Acer spp.) in a common garden are influenced by season and host plant. Botany 92:321–326. CrossRefGoogle Scholar
  27. Higo M, Isobe K, Kondo T, Yamaguchi M, Takeyama S, Drijber RA, Yoichi T (2015) Temporal variation of the molecular diversity of arbuscular mycorrhizal communities in three different winter cover crop rotational systems. Biol Fertil Soils 51:21–32. CrossRefGoogle Scholar
  28. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for interpolation and extrapolation of species diversity (hill numbers). Methods Ecol Evol 7:1451–1456. CrossRefGoogle Scholar
  29. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:509–516. CrossRefGoogle Scholar
  30. Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-Arbuscular Mycorrhizal Fungi in Amazonian Peru. Ecology 76:1852–1858. CrossRefGoogle Scholar
  31. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, Mcginnis S, Madden TL (2008) Ncbi blast: a better web interface. Nucleic Acids Res 36:5–9. CrossRefGoogle Scholar
  32. Jumpponen A (2007) Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microb Ecol 53:233–246. CrossRefPubMedGoogle Scholar
  33. Karlsson PS, Nordell KO (1996) Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3:183–189. CrossRefGoogle Scholar
  34. Kembel SW, Cowan PD, Helmus MR (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. CrossRefGoogle Scholar
  35. Kennedy PG, Cline LC, Song Z (2018) Probing promise versus performance in longer read fungal metabarcoding. New Phytol 217:973–976. CrossRefPubMedGoogle Scholar
  36. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. CrossRefGoogle Scholar
  37. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. CrossRefGoogle Scholar
  38. Körner C (2007) The use of ‘elevation’ in ecological research. Trends Ecol Evol 22:569–574. CrossRefPubMedGoogle Scholar
  39. Kotilínek M, Hiiesalu I, Košnar J, Šmilauerová M, Šmilauer P, Altman J, Dvorský M, Kopeck M, Doležal J (2017) Fungal root symbionts of high-elevation vascular plants in the Himalayas. Sci Rep-UK 7:6562. CrossRefGoogle Scholar
  40. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. CrossRefPubMedGoogle Scholar
  41. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. CrossRefPubMedGoogle Scholar
  42. Li MC, Luo TX, Guo J, He JC, Liu SX (2008) Soil heat flux of virginal forest on timberline of Southeast Tibet. J Mountain Sci 26:490–495 in ChineseGoogle Scholar
  43. Li X, Gai J, Cai X, Li X, Christie P, Zhang F, Zhang J (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co–occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:95–107. CrossRefPubMedGoogle Scholar
  44. Li X, Zhang J, Gai J, Cai X, Christie P, Li X (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan plateau. Environ Microb 17:2841–2857. CrossRefGoogle Scholar
  45. Liu L, Hart MM, Zhang J, Cai X, Gai J, Christie P, Li X, Klironomos JN (2015) Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiol Ecol 91:fiv078. CrossRefPubMedGoogle Scholar
  46. Liu Y, He J, Shi G, An L, Öpik M, Feng H (2011) Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high elevation in Tibet plateau. FEMS Microbiol Ecol 78:355–365. CrossRefPubMedGoogle Scholar
  47. Lu RK (1999) Analysis methods of soil agricultural chemistry. Agricultural Science and Technology Press, Beijing, pp 296–314 in Chinese Google Scholar
  48. Lugo MA, Ferrero M, Menoyo E, Estévez MC, Siñeriz F, Anton A (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south American Puna grassland. Microb Ecol 55:705–713. CrossRefPubMedGoogle Scholar
  49. Lugo MA, Negritto MA, Jofré M, Anton A, Galetto L (2012) Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of elevation, host photosynthetic pathway and host life cycles. FEMS Microbiol Ecol 81:455–466. CrossRefPubMedGoogle Scholar
  50. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. CrossRefGoogle Scholar
  51. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695. CrossRefPubMedPubMedCentralGoogle Scholar
  52. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501. CrossRefGoogle Scholar
  53. Montiel-Rozas MDM, López-García Á, Madejón P, Madejón E (2017) Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biol Fert Soils 53:327–338. CrossRefGoogle Scholar
  54. Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T–RFLP analysis. Plant Soil 271:83–90. CrossRefGoogle Scholar
  55. Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges: an overview. Mycorrhiza 14:65–77. CrossRefGoogle Scholar
  56. Nuccio EE, Hodge A, Pett-Ridge J (2013) An arbuscular mycorrhizal fungus modifies the soil microbial community and nitrogen cycling during litter decomposition. Environ Microb 15:1870–1881. CrossRefGoogle Scholar
  57. Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for angiosperm plant life[J]. Alpine Bot 124:193–198. CrossRefGoogle Scholar
  58. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738. CrossRefGoogle Scholar
  59. Oehl F, Palenzuela J, Sánchez-Castro I, Kuss P, Sieverding E, Silva GAD (2012) Acaulospora nivalis, a new fungus in the Glomeromycetes, characteristic for high alpine and nival elevations of the Swiss alps. Nova Hedwigia 95:105–122. CrossRefGoogle Scholar
  60. Oehl F, Sýkorová Z, Redecker D, Wiemken A, Sieverding E (2006) Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss alps. Mycologia 98:286–294. CrossRefPubMedGoogle Scholar
  61. Oehl F, Tchabi A, da Silva GA, Sanchez-Castro I, Palenzuela J, do Monte IP (2014) Acaulospora spinosissima, a new arbuscular mycorrhizal fungus from the southern Guinea savanna in Benin. Sydowia 66:29–42. CrossRefGoogle Scholar
  62. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2013) Vegan: community ecology package. 2013. R-package version 2.0-10. URL
  63. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis (Part 2). American Society of Agronomy, Madison, pp 403–430Google Scholar
  64. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Largescale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. CrossRefPubMedGoogle Scholar
  65. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. CrossRefGoogle Scholar
  66. Palenzuela J, Azcón-Aguilar C, Barea JM, Alves da Silva G, Oehl F (2013) Acaulospora pustulata and Acaulospora tortuosa, two new species in the Glomeromycota from sierra Nevada National Park (southern Spain). Nova Hedwigia 97:305–319. CrossRefGoogle Scholar
  67. Phillips J, Hayman D (1970) Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160CrossRefGoogle Scholar
  68. Pietikäinen A, Kytöviita MM, Husband R, Young JPW (2007) Diversity and persistence of arbuscular mycorrhizas in a low–Arctic meadow habitat. New Phytol 176:691–698. CrossRefPubMedGoogle Scholar
  69. Ranelli LB, Hendricks WQ, Lynn JS, Kivlin SN, Rudgers JA (2015) Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Divers Distrib 21:962–976. CrossRefGoogle Scholar
  70. Rao NS, Tilak K, Singh CS (1985) Effect of combined inoculation of Azospirillum brasilense and vesicular-arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil 84:283–286. CrossRefGoogle Scholar
  71. Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (glomeromycota). Mycorrhiza 23:515–531. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–58. CrossRefGoogle Scholar
  73. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: Mycorrhizal ecology. Springer, Berlin, Heidelberg, pp 415–437CrossRefGoogle Scholar
  74. Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi–natural grassland along a fertilisation gradient. New Phytol 172:159–168. CrossRefPubMedGoogle Scholar
  75. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541. CrossRefGoogle Scholar
  76. Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt CW (2008) Mycorrhizal and dark–septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct Antarct Alp Res 40:576–583.[SCHMIDT]2.0.COGoogle Scholar
  77. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5:e01371–e01314. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shi G, Liu Y, Johnson NC, Olsson PA, Mao L, Cheng G, Jiang S, An L, Du G, Feng H (2014) Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378:173–188. CrossRefGoogle Scholar
  79. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microb 58:291–295.[2731:IOLFAF]2.0.CO;2CrossRefGoogle Scholar
  80. Smith SE, Read DJ (2008) The symbionts forming arbuscular mycorrhizas. In: Mycorrhizal Symbiosis, 3rd edn. Academic Press, London, pp 13–30CrossRefGoogle Scholar
  81. Sun X, Su Y, Zhang Y, Wu M, Zhang Z, Pei K, Sun L, Wan S, Liang Y (2013) Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chinese Sci Bull 58:4109–4119. CrossRefGoogle Scholar
  82. Sworfford DL (2003) Paup* phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer associates, SunderlandGoogle Scholar
  83. Taylor J, Harrier LA (2001) A comparison of development and mineral nutrition of micropropagated Fragaria×ananassa cv. Elvira (strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. Appl Soil Ecol 18:205–215. CrossRefGoogle Scholar
  84. Tedersoo L, Tooming-Klunderud A, Anslan S (2018) PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol 217:1370–1385. CrossRefPubMedGoogle Scholar
  85. Urcelay C, Acho J, Joffre R (2011) Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21:323–330. CrossRefPubMedGoogle Scholar
  86. Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10:2341–2351. CrossRefPubMedPubMedCentralGoogle Scholar
  87. van der Heijden MGA, Klironomos JN, Ursic M (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. CrossRefGoogle Scholar
  88. Van Geel M, Busschaert P, Honnay O, Lievens B (2014) Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. J Microbiol Meth 106:93–100. CrossRefGoogle Scholar
  89. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095. CrossRefPubMedGoogle Scholar
  90. Vanselow KA (2016) Eastern Pamirs: a vegetation–plot database for the high mountain pastures of the Pamir plateau (Tajikistan). Phytocoenologia 46:105–105. CrossRefGoogle Scholar
  91. Varela-Cervero S, López-García Á, Barea JM, Azcón-Aguilar C (2016) Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean shrubland. Plant Soil 408:107–120. CrossRefGoogle Scholar
  92. Varela-Cervero S, Vasar M, Davison J, Barea JM (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five mediterranean plant species. Environ Microb 17:2882–2895. CrossRefGoogle Scholar
  93. Velázquez MS, Stürmer SL, Bruzone C, Fontenla S, Barrera M, Cabello M (2016) Occurrence of arbuscular mycorrhizal fungi in high elevation sites of the Patagonian Altoandina region in Nahuel Huapi National Park (Argentina). Acta Bot Bras 30:521–531. CrossRefGoogle Scholar
  94. Wahl AL, Spiegelberger T (2016) Arbuscular mycorrhizal fungi in changing mountain grassland ecosystems: a challenge for research. Botany 94:435–458. CrossRefGoogle Scholar
  95. Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:15159. CrossRefPubMedGoogle Scholar
  96. Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan plateau. Microb Ecol 69:135–145. CrossRefPubMedGoogle Scholar
  97. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Schwartz M (2011) Gplots: various R programming tools for plotting data. [WWW document] URL [accessed 11 July 2013]
  98. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol S 33:475–505. CrossRefGoogle Scholar
  99. Webb CO, Ackerly, DD, Kembel S (2008) Phylocom: Software for the analysis of phylogenetic community structure and character evolution. Version 4.0. phylocom. Accessed Sept 2010
  100. Werner GDA, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442. CrossRefPubMedGoogle Scholar
  101. Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol 204:968–978. CrossRefPubMedGoogle Scholar
  102. Xu M, Li X, Cai X, Li X, Christie P, Zhang J (2017) Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the. Tibetan Plateau Sci Rep-UK 7:3067. CrossRefGoogle Scholar
  103. Yang W, Zheng Y, Gao C, Duan JC, Wang SP, Guo LD (2016) Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet plateau. Sci Rep-UK 6:36606. CrossRefGoogle Scholar
  104. Yang W, Zheng Y, Gao C, Gao C, He X, Ding Q, Kim Y, Rui Y, Wang S, Guo L (2013) The Arbuscular Mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan plateau. PLoS One 8:e76447. 10.1371/journal.pone.0076447CrossRefGoogle Scholar
  105. Yang ZL, Gao Q (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20:281–287. CrossRefPubMedGoogle Scholar
  106. Zhang J, Wang F, Che R, Wang P, Liu H, Ji B, Cui X (2016) Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Sci Rep 6:23488. CrossRefPubMedPubMedCentralGoogle Scholar
  107. Zheng Y, Chen L, Luo CY, Zhang ZH, Wang SP, Guo LD (2016) Plant identity exerts stronger effect than fertilization on soil arbuscular mycorrhizal fungi in a sown pasture. Microb Ecol 72:647–658. CrossRefPubMedGoogle Scholar
  108. Zheng Y, Kim YC, Tian XF, Chen L, Yang W, Gao C, Song M, Xu X, Guo L (2014) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow[J]. FEMS Microbiol Ecol 89:594–605. CrossRefPubMedGoogle Scholar
  109. Zobel M, Öpik M (2014) Plant and arbuscular mycorrhizal fungal (AMF) communities: which drives which? J Veg Sci 25:1133–1140. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoliang Li
    • 1
    Email author
  • Meng Xu
    • 2
  • Peter Christie
    • 3
  • Xiaolin Li
    • 3
  • Junling Zhang
    • 4
  1. 1.Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of AgricultureDanzhouPeople’s Republic of China
  2. 2.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  4. 4.College of Resources and Environmental Sciences, Centre for Resources, Environment and Food SecurityChina Agricultural UniversityBeijingChina

Personalised recommendations