, Volume 28, Issue 4, pp 357–368 | Cite as

Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes

  • Francisca Reis
  • Teresa Valdiviesso
  • Carolina Varela
  • Rui M. Tavares
  • Paula Baptista
  • Teresa Lino-Neto
Original Article


Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.


Cork oak ECMF community Environmental factors Exploration types 


Funding information

This work was supported by Fundação Ciência e Tecnologia (FCT/MCTES/PIDDAC, Portugal), under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012).

Supplementary material

572_2018_832_MOESM1_ESM.docx (330 kb)
ESM 1 (DOCX 330 kb)


  1. Acácio V, Holmgren M, Rego F, Moreira F, Mohren GMJ (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforest Sys 76:389–400. CrossRefGoogle Scholar
  2. Acácio V, Dias FS, Catry FX, Rocha M, Moreira F (2017) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Chang Biol 23:1199–1217. CrossRefPubMedGoogle Scholar
  3. Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11(2):107–114. CrossRefGoogle Scholar
  4. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progress (2006) 5: 67–107. Doi:
  5. Albornoz FB, Teste FP, Lambers H, Bunce M, Murray DIC, White NE, Lalibert E (2016) Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence. Mol Ecol 25:4919–4929. CrossRefPubMedGoogle Scholar
  6. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. Google Scholar
  7. APCOR (2016) Cork Sector in Numbers, Associação Portuguesa de Cortiça (Portuguese Cork Association), Portugal.
  8. Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above-and belowground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. CrossRefGoogle Scholar
  9. Azul AM, Sousa JP, Agerer R, Martín MP, Freitas H (2010) Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios. Mycorrhiza 20:73–88. CrossRefPubMedGoogle Scholar
  10. Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130 doi:org/
  11. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:4999–1007. doi:, 999
  12. Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. CrossRefGoogle Scholar
  13. Comandini O, Contu M, Rinaldi AC (2006) An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16:381 CrossRefPubMedGoogle Scholar
  14. Courty PE, François M, Selousse M-A, Duchemin M, Criquet S, Ziarelli F, Buee M, Plassard C, Taudiere A, Garbaye J, Richard F (2016) Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. J Ecol 104:1585–1598. CrossRefGoogle Scholar
  15. De Román M, De Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482. CrossRefPubMedGoogle Scholar
  16. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366.[0345:SAAIST]2.0.CO;2Google Scholar
  17. Emberger L (1930) La végétation de la région méditerranéenne: essai d’une classification des groupements végétaux. Librairie générale de l’enseignement.Google Scholar
  18. Fernandez CW, Koide RT (2013) The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol 6:479–486. CrossRefGoogle Scholar
  19. Gardes M, Bruns TD (1993) ITS primes with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and roots. Mol Ecol 2:113–118. CrossRefPubMedGoogle Scholar
  20. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. CrossRefGoogle Scholar
  21. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn J, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, SchererLorenzen M, Schulze ED, Siamantziouras ASD, Spehn E, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity in European grasslands. Science 286:1123–1127. CrossRefPubMedGoogle Scholar
  22. van der Heijden MG, de Bruin S, Luckerhoff L, van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399. CrossRefPubMedGoogle Scholar
  23. Henderson PA, Seaby RMH (2007) Community Analysis Package 4.0. Lymington, UK: Pisces Conservation Ltd.Google Scholar
  24. Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83. CrossRefGoogle Scholar
  25. Hyder R, Pennanen T, Hamberg L, Vainio EJ, Piri T, Hantula J (2013) Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. Fungal Ecol 6:387–396. doi: org/
  26. Jany JL, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659. CrossRefGoogle Scholar
  27. Jarvis S, Woodward S, Alexander IJ, Taylor AFS (2013) Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine. Glob Change Biol 19:1688–1696. CrossRefGoogle Scholar
  28. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79. CrossRefGoogle Scholar
  29. Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472. CrossRefPubMedGoogle Scholar
  30. Lamit LJ, Holeski LM, Flores-Rentería L, Whitham TG, Gehring CA (2016) Tree genotype influences ectomycorrhizal fungal community structure: ecological and evolutionary implications. Fungal Ecol 24:124–134. CrossRefGoogle Scholar
  31. Lancellotti E, Franceschini A (2013) Studies on the ectomycorrhizal community in a declining Quercus suber L. stand. Mycorrhiza 23:533–542. CrossRefPubMedGoogle Scholar
  32. Maghnia FZ, Sanguin H, Abbas Y, Verdinelli M, Kerdouh B, El Ghachtouli N, Lancellotti E, Eddin S, Yakhlef B, Duponnois R (2017) Impact du mode de gestion de la subéraie de la Maâmora (Maroc) sur la diversité des champignons ectomycorhiziens associés à Quercus suber. C R Biol 340: 298–305. doi: org/
  33. Magurran AE (2004) Measuring biological diversity. Blackwell Pub, MaldenGoogle Scholar
  34. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  35. Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2007) Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi—impact on plant performance and mycorrhizal community. Mycorrhiza 17:337–348. CrossRefPubMedGoogle Scholar
  36. Miyamoto Y, Sakai A, Hattori M, Nara K (2015) Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains. ISME J 9:1870–1879. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moricca S, Franceschini A, Ragazzi A, Linaldeddu BT, Lancellotti E (2014) Studies on communities of endophytic (end) and ectomycorrhizal (ecm) fungi associated with oaks in pure and mixed stands. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes, a laboratory manual: part B: fungi, pp 165–172Google Scholar
  38. Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE (2018) Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microbial Ecol 75:348–363. CrossRefGoogle Scholar
  39. Oksanen J, Blanchet FG, Kindt R et al. (2012) Vegan: CommunityEcology Package. R package version 2.0-5Google Scholar
  40. Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240. CrossRefGoogle Scholar
  41. Ramírez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2009a) Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol 18:3803–3815. CrossRefPubMedGoogle Scholar
  42. Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009b) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For Ecol Manag 257:1676–1683. CrossRefGoogle Scholar
  43. Rego FC, Rocha MS (2014) Climatic Patterns in the Mediterranean region. Ecologia mediterranea: Revue internationale d’écologie méditerranéenne. Int J Mediterran Ecol 40:49–60Google Scholar
  44. Reis F, Tavares RM, Baptista P, Lino-Neto T (2017) Mycorrhization of Fagaceae forests within Mediterranean ecosystems. Mycorrhiza—function, diversity, state of the art, 4th edn. Springer, BerlinGoogle Scholar
  45. Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023. CrossRefPubMedGoogle Scholar
  46. Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse MA (2011) Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann For Sci 68:57–68. CrossRefGoogle Scholar
  47. Roberts DW (2010) labdsv: Ordination and multivariate analysis for ecology. R package version 1.4-1.
  48. Rout ME (2014) The plant microbiome. Adv Bot Res 69:279–309. CrossRefGoogle Scholar
  49. Selosse M-A, Bouchard D, Martin F, Le Tacon F (2000) Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can J For Res 30:360–371. CrossRefGoogle Scholar
  50. Shi S, Richardson AE, O’Callaghan M, Deangelis KM, Jones EE, Stewart A, Firestone MA, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610. CrossRefPubMedGoogle Scholar
  51. Smith S, Read D (2008) Mycorrhizal symbiosis, 3th edn. Academic, New York and Harcourt BraceGoogle Scholar
  52. Štursová M, Bárta J, Šantrůčková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol. doi: org/
  53. Suz LM, Barsoum N, Benham S, Dietrich H-P, Fetzer KD, Fischer R, Ia PG, Gehrman J, Gofel FK, Mannunger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Anchez GS, Schrock HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644. CrossRefPubMedGoogle Scholar
  54. Tate EL, Gustard A (2000) Drought definition: a hydrological perspective. In: Drought and drought mitigation in Europe. Springer, Netherlands, pp 23–48Google Scholar
  55. Varela MC, Eriksson G (1995) Multipurpose gene conservation in Quercus suber—a Portuguese example. Silvae Genet 44:28–37Google Scholar
  56. Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278. CrossRefPubMedGoogle Scholar
  57. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) In PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322Google Scholar
  58. Yakhlef S, Mousain D, Duponnois R, Ducousso M, Belkouri A, Kerdouh B, Perrineau MM, Abourouh M (2009) Molecular phylogeny of Pisolithus species from Moroccan forest woodlands. Symbiosis 49:157–162. CrossRefGoogle Scholar
  59. Zhou Z, Wang C, Luo Y (2018) Effects of forest degradation on microbial communities and soil carbon cycling: a global meta-analysis. Glob Ecol Biogeogr 27:110–124. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology CentreUniversity of MinhoBragaPortugal
  2. 2.Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS-SAFSVOeirasPortugal
  3. 3.CIMO, School of Agriculture, Polytechnic Institute of BragançaBragançaPortugal

Personalised recommendations