Skip to main content
Log in

The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Tricholoma matsutake is an economically important ectomycorrhizal fungus of coniferous woodlands. Mycologists suspect that this fungus is also capable of saprotrophic feeding. In order to evaluate this hypothesis, enzyme and chemical assays were performed in the field and laboratory. From a natural population of T. matsutake in southern Finland, samples of soil–mycelium aggregate (shiro) were taken from sites of sporocarp formation and nearby control (PCR-negative) spots. Soil organic carbon and activity rates of hemicellulolytic enzymes were measured. The productivity of T. matsutake was related to the amount of utilizable organic carbon in the shiro, where the activity of xylosidase was significantly higher than in the control sample. In the laboratory, sterile pieces of bark from the roots of Scots pine were inoculated with T. matsutake and the activity rates of two hemicellulolytic enzymes (xylosidase and glucuronidase) were assayed. Furthermore, a liquid culture system showed how T. matsutake can utilize hemicellulose as its sole carbon source. Results linked and quantified the general relationship between enzymes secreted by T. matsutake and the degradation of hemicellulose. Our findings suggest that T. matsutake lives mainly as an ectomycorrhizal symbiont but can also feed as a saprotroph. A flexible trophic ecology confers T. matsutake with a clear advantage in a heterogeneous environment and during sporocarp formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–60. doi:10.1007/s00442-009-1433-7

    Article  PubMed  Google Scholar 

  • Bergius N, Danell E (2000) The Swedish matsutake (Tricholoma nauseosum syn. T. matsutake): distribution, abundance and ecology. Scand J Forest Res 15:318–25. doi:10.1080/028275800447940

    Article  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS, Olson Å, Lindahl BD (2009) Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395. doi:10.1038/ismej.2009.77

    Article  PubMed  Google Scholar 

  • Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhizal communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–19. doi:10.1111/j.1469-8137.2005.01401.x

    Article  PubMed  CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem process: new perspective and emerging concepts. Soil Biol Biochem 42:679–98. doi:10.1016/j.soilbio.2009.12.006

    Article  CAS  Google Scholar 

  • Cullings K, Courty P-E (2009) Saprotrophic capacities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161:661–4. doi:10.1007/s00442-009-1434-6

    Article  PubMed  Google Scholar 

  • Gill WM, Guerin-laguette A, Lapeyrie F, Suzuki K (2000) Matsutake—morphological evidence of ectomycorrhiza formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol 147:381–8. doi:10.1046/j.1469-8137.2000.00707.x

    Article  Google Scholar 

  • Hansson K, Kleja DB, Kalbitz K, Larsson H (2010) Amounts of carbon mineralized and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biol Biochem 42:178–85. doi:10.1016/j.soilbio.2009.10.013

    Article  CAS  Google Scholar 

  • Hosford D, Pliz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. USDA General Technical Report PNW-GTR-412

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13. doi:10.11186/1741-7007-7-13

    Article  PubMed  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–8. doi:10.1038/35035065

    Article  PubMed  CAS  Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2011) Properties of dissolved organic matter derived from silver birch and Norway spruce stands: degradability combined with chemical characteristics. Soil Biol Biochem 43:421–30. doi:10.1016/j.soilbio.2010.11.011

    Article  Google Scholar 

  • Kikuchi K, Matsushita N, Gurein-Laguette A, Ohta A, Suzuki K (2000) Detection of Tricholoma matsutake by specific ITS primers. Mycol Res 104:1427–30. doi:10.1017/S0953756200002653

    Article  CAS  Google Scholar 

  • Kramer C, Trumbore S, Fröberg M, Dozal LMC, Zhang D, Xu X, Santos GM, Hanson PJ (2010) Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–37. doi:10.1016/j.soilbio.2010.02.021

    Article  CAS  Google Scholar 

  • Kusuda M, Ueda M, Konishi Y, Araki Y, Yamanaka K, Nakazawa M, Miyatake K, Terashita T (2006) Detection of β-glucosidase as a saprotrophic ability from an ectomycorrhizal mushroom, Tricholoma matsutake. Mycoscience 47:184–9. doi:10.1007/s10267-005-0289-x

    Article  CAS  Google Scholar 

  • Leppänen K, Spetz P, Pranovich A, Hartonen K, Kitunen V, Ilvesniemi H (2011) Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system. Wood Sci Technol 45(2):223–36. doi:10.1007/s00226-010-0320-z

    Article  Google Scholar 

  • Lun Z-M, Li Y-H, Vaario L-M (2004) Ability of ectomycorrhizal fungus—Tricholoma matsutake to utilize cellobiose. Mycosystema 23(4):563–7

    CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1973) The structure of a β-(1–3)-d-glucan from yeast cell walls. Biochem J 135:19–30

    PubMed  CAS  Google Scholar 

  • Martin F et al. (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88-92. doi:10.1038/nature 06556

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–63

    Google Scholar 

  • Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–6. doi:10.1007/s10267-004-0220-x

    Article  CAS  Google Scholar 

  • Merilä P, Malmivaara-Lämsä M, Spetz P, Stark S, Vierikko K, Derome J, Fritze H (2010) Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl Soil Ecol 46:259–67. doi:10.1016/j.apsoil.2010.08.003

    Article  Google Scholar 

  • Ogawa M (1975) Microbial ecology of mycorrhizal fungus—Tricholoma matsutake (Ito et Imai) Sing. In pine forest. II. Mycorrhiza formed by T. matsutake. Bull Gov Forest Exp Station 278:21–80

    Google Scholar 

  • Ogawa M (1978) The biology of matsutake mushroom. Tsukiji Shokan, Tokyo, p 326

    Google Scholar 

  • Park JH, Kalbitz K, Matzner E (2002) Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biol Biochem 34:813–22. doi:10.1016/S0038-0717(02)00011-1 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  • Pritsch K, Courty PE, Churin J-L, Cloutier-Hurteau B, Arif Ali M, Damon C, Duchemin M, Egli S, Ernst J, Fraissinet-Tachet L, Kuhar F, Legname E, Marmeisse R, Müller A, Nikolova P, Peter M, Plassard C, Richard F, Schloter M, Selosse M-A, Franc A, Garbaye J (2011) Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza. doi:10.1007/s00572-011-0364-4

  • Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–19. doi:10.3183/NPPRJ-1996-11-04-p216-219

    Article  CAS  Google Scholar 

  • Sundberg A, Pranovich AV, Holmbom B (2003) Chemical characterization of various types of mechanical pulp fines. J Pulp Pap Sci 29:173–8

    CAS  Google Scholar 

  • Suzuki K (2005) Ectomycorrhizal ecophysiology and puzzle of Tricholoma matsutake. J Jpn For Soc 87:90–102 (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–63. doi:10.1111/j.1365-2435.2008.01402.x

    Article  Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–12. doi:10.1017/S0269915X05003034

    Google Scholar 

  • Uselman SM, Qualls RG, Lilienfein J (2009) Production of total potentially soluble organic C, N, and P across an ecosystem chronosequence: root versus leaf litter. Ecosystems 12:240–60. doi:10.1007/s10021-008-9220-6

    Article  CAS  Google Scholar 

  • Vaario L-M, Guerin-laguette A, Matsushita N, Suzuki K, Lapeyrie F (2002) Saprobic potential of Tricholoma matsutake: growth over bark treated with surfactants. Mycorrhiza 12(1):1–6. doi:10.1007/s00572-001-0144-7

    Article  PubMed  CAS  Google Scholar 

  • Vaario L-M, Gill WM, Samejima M, Suzuki K (2003) Detection of the ability of Tricholoma matsutake to utilize sawdust in aseptic culture. Symbiosis 34:43–52

    CAS  Google Scholar 

  • Vaario L-M, Pennanen T, Sarjala T, Savonen E, Heinonsalo J (2010a) Ectomycorrhization of Tricholoma matsutake and two main forest tree species in Finland—an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–18. doi:10.1007/s00572-001-0304-8

    Article  PubMed  Google Scholar 

  • Vaario L-M, Fritze H, Sarjala T, Savonen E, Pennanen T (2010b) Structure of fungal and actinobacterial communities in the soil dominated by Tricholoma matsutake. 13th International Symposium on Microbial Ecology. 22–27 August, Seattle, WA, USA. PS.10.026

  • Valentin L, Kluczek-Turpeinen B, Willför S, Hemming J, Hatakka A, Steffen K, Tuomela M (2009) Scots pine (Pinus sylvestris) bark composition and degradation by fungi: potential substrate for bioremediation. Bioresour Technol 101:2203–9. doi:10.1016/j.biortech.2009.11.052

    Article  PubMed  Google Scholar 

  • Yamada Y, Maeda K, Ohmasa M (1999) Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40:455–463. doi:10.1007/BF02461022

    Article  Google Scholar 

Download references

Acknowledgements

We thank Toyahiro Miyazawa for help in soil sampling, Sonia Sarsila for media preparation, Satu Repo and Toni Malinen for chemical analysis, Michael Hardman for revising the English, and Anne Siika for help with the illustration. This research was supported by the Foundation for Research of Natural Resources in Finland and by the Academy of Finland (project number 1212915 and 130984 to Jussi Heinonsalo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Min Vaario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaario, LM., Heinonsalo, J., Spetz, P. et al. The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22, 409–418 (2012). https://doi.org/10.1007/s00572-011-0416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0416-9

Keywords

Navigation