Mycorrhiza

, Volume 16, Issue 8, pp 559–565

The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings

  • E. Bandou
  • F. Lebailly
  • F. Muller
  • M. Dulormne
  • A. Toribio
  • J. Chabrol
  • R. Courtecuisse
  • C. Plenchette
  • Y. Prin
  • R. Duponnois
  • M. Thiao
  • S. Sylla
  • B. Dreyfus
  • A. M. Bâ
Original Paper

Abstract

The purpose of this study was to test the capacity of the ectomycorrhizal (ECM) fungus, Scleroderma bermudense, to alleviate saline stress in seagrape (Coccoloba uvifera L.) seedlings. Plants were grown over a range (0, 200, 350 and 500 mM) of NaCl levels for 12 weeks, after 4 weeks of non-saline pre-treatment under greenhouse conditions. Growth and mineral nutrition of the seagrape seedlings were stimulated by S. bermudense regardless of salt stress. Although ECM colonization was reduced with increasing NaCl levels, ECM dependency of seagrape seedlings increased. Tissues of ECM plants had significantly increased concentrations of P and K but lower Na and Cl concentrations than those of non-ECM plants. Higher K concentrations in the leaves of ECM plants suggested a higher osmoregulating capacity of these plants. Moreover, the water status of ECM plants was improved despite their higher evaporative leaf surface. The results suggest that the reduction in Na and Cl uptake together with a concomitant increase in P and K absorption and a higher water status in ECM plants may be important salt-alleviating mechanisms for seagrape seedlings growing in saline soils.

Keywords

Coccoloba uvifera Ectomycorrhizal dependency Mineral uptake Salt stress Water status 

References

  1. Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54CrossRefGoogle Scholar
  2. Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47CrossRefGoogle Scholar
  3. Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  4. Bandou E (2005) Diversité et fonctionnement des symbioses ectomycorhiziennes de Coccoloba uvifera (L.) L. en situation de stress salin et hydrique. Master of Science thesis, UAG, p 36Google Scholar
  5. Berthomieu P, Conejéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedCrossRefGoogle Scholar
  6. Bois G, Bertrand A, Piché Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109PubMedCrossRefGoogle Scholar
  7. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. In: Lynch P (ed) ACIAR Monograph 32. Canberra, Australia, pp117–118Google Scholar
  8. Chen DM, Ellul S, Herdman K, Cairnay JWG (2001) Influence of salinity on biomass production by Australian Pisolithus spp. isolates. Mycorrhiza 11:231–236CrossRefGoogle Scholar
  9. Dixon RK, Rao MV, Garg VK (1993) Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza 3:63–68CrossRefGoogle Scholar
  10. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190PubMedCrossRefGoogle Scholar
  11. Gagnon J, Haycock KA, Roth JM, Felman DS, Finzer WF (1989) Super ANOVA didacticiel. In: Abacus Concepts Inc. (ed) Les modèles linéaires généralisées. Berkeley, CA, USA, pp1–47Google Scholar
  12. Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Mycorrhiza 38:170–175Google Scholar
  13. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312PubMedCrossRefGoogle Scholar
  14. Gupta R, Krishnamurthy KV (1996) Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress. Mycorrhiza 6:145–149CrossRefGoogle Scholar
  15. Guzman G, Ramirez-Guillén F, Miller OK, Lodge DJ, Baroni TJ (2004) Scleroderma stellatum versus Scleroderma bermudense: the status of Scleroderma echinatum and the first record of Veligaster nitidum from the Virgin Islands. Mycologia 96:1370–1379Google Scholar
  16. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communications. N° 22, 2nd edn. revised. Commonwealth Agricultural Bureau, LondonGoogle Scholar
  17. Hutchison LJ (1990) Studies on the systematics of ectomycorrhizal fungi in axenic culture. IV. The effect of some selected fungi toxic compounds upon linear growth. Can J Bot 68:2172–2178Google Scholar
  18. Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  19. Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of Boreal ectomycorrhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:1–9CrossRefGoogle Scholar
  20. Kreisel K (1971) Clave para la identificacion de los macromicetos de Cuba. La Habana: Ser. A, Ciencas Biologicas 16, Universidad de la Habana, p 101Google Scholar
  21. Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups. In: Springer (ed) Third edition, pp396–409Google Scholar
  22. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  23. Miller OK, Lodge DJ, Baroni TJ (2000) New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands. Mycologia 92:558–570Google Scholar
  24. Mushin TM, Zwiazek JJ (2002) Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil 238:217–225CrossRefGoogle Scholar
  25. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell and Environment 25:239–250CrossRefGoogle Scholar
  26. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  27. Novozamsky VJG, Huba R, Van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–249CrossRefGoogle Scholar
  28. Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259CrossRefGoogle Scholar
  29. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  30. Parrota JA (1994) Coccoloba uvifera (L.) L., seagrape, uva de playa. Research note SOITF-SM-74. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, LA. p 5Google Scholar
  31. Pegler DN (1983) Agaric flora of the Lesser Antilles. Kew Bull Add Ser 9, p 668Google Scholar
  32. Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209CrossRefGoogle Scholar
  33. Ryan J, Garabet S, Harmsen K, Rashid A (1996) A soil land plant analysis manual adapted for the West Asia and North Africa regions. ICARDA, AllepoGoogle Scholar
  34. Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772CrossRefGoogle Scholar
  35. Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143CrossRefGoogle Scholar
  36. Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148CrossRefGoogle Scholar
  37. Yan-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agr Eco Env 95:343–348CrossRefGoogle Scholar
  38. Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chloride in water. Anal Chem 28:1665–1668CrossRefGoogle Scholar
  39. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • E. Bandou
    • 1
    • 2
  • F. Lebailly
    • 1
  • F. Muller
    • 1
  • M. Dulormne
    • 1
  • A. Toribio
    • 2
  • J. Chabrol
    • 1
  • R. Courtecuisse
    • 3
  • C. Plenchette
    • 4
  • Y. Prin
    • 5
  • R. Duponnois
    • 5
    • 6
  • M. Thiao
    • 6
  • S. Sylla
    • 6
  • B. Dreyfus
    • 5
  • A. M. Bâ
    • 1
    • 5
  1. 1.Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturellesUniversité des Antilles et de la GuyaneGuadeloupeFrance
  2. 2.Laboratoire de mycologie-flore pathogène du solUnité de recherches en productions végétales, Domaine de DuclosGuadeloupeFrance
  3. 3.Département de botanique, Faculté des sciences pharmaceutiques et biologiquesUniversité de LilleLille CedexFrance
  4. 4.INRAUMR BGADijonFrance
  5. 5.Laboratoire des symbioses tropicales et méditerranéennes,UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/JCampus international de BaillarguetMontpellier cedexFrance
  6. 6.Laboratoire commun de microbiologie IRD/ISRA/UCADDakarSénégal

Personalised recommendations