Green shipping: using AIS data to assess global emissions

Grüne Schifffahrt: Verwendung von AIS-Daten zur Bewertung globaler Emissionen

Abstract

Globalization and new environmental legislations lead to a rising need for new technological developments for the shipping industry, especially creating smart ports, smart waterways and smart ships. However, since these developments are on the horizon and thus not currently not state of the art, emphasis is on reducing emissions from shipping. To reduce the amount of CO2 emitted by the maritime transport sector, the European Parliament introduced a regulation, which came into force in 2018, establishing a CO2 emission Monitoring, Reporting, and Verification System. In order to measure and assess global ship emissions, an estimation model will be developed. Using AIS and environmental data, ship’s resistance through water will be modelled. Based on the main engine used, the presumed fuel consumption of a voyage and thus the emissions can be indicated and hourly energy requirements for each ship worldwide quantified. Based on the knowledge gained from historical evaluations, a target/actual comparison enables the evaluation of the performance of a ship and thus the identification of emission reduction potentials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

Cited Literature

  1. Chen D, Zhao Y, Nelson P, Li Y, Wang X, Zhou Y, Lang J, Guo X (2016) Estimating ship emissions based on AIS data for port of Tianjin, China. Atmos Environ 145:10–18

    Article  Google Scholar 

  2. Chi H, Pedrielli G, Kister T, Ng S, Bressan S (2015) An AIS-based framework for real time monitoring of vessels efficiency. Industrial Engineering and Engineering Management (IEEM).

    Google Scholar 

  3. Coello J, Williams I, Hudson DA, Kemp S (2015) An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet. Atmos Environ 114:1–7

    Article  Google Scholar 

  4. Conference ITT (2002) Testing and extrapolation methods high speed marine vehicles resistance test. https://ittc.info/media/2065/75-02-05-01.pdf. Accessed 13 Oct 2019

  5. Cotteleer A, Hulskotte JH, Van der Tak C (2012) Sea shipping emissions 2010: Netherlands continental shelf, port areas and OSPAR region II

    Google Scholar 

  6. Diesch J‑M, Drewnick F, Klimach T, Borrmann S (2013) Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. Atmos Chem Phys. https://doi.org/10.5194/acp-13-3603-2013

    Article  Google Scholar 

  7. ECTA, CefiC (2011) Guidelines for measuring and managing CO2 emission from freight transport operations

    Google Scholar 

  8. Energy Institute UCL CO2 emissions for every ship for every hour, now that’s big data! https://www.bartlett.ucl.ac.uk/energy/news/interactive-shipping-map (Created 19 Apr 2016). Accessed 27 Sept 2016

  9. European Commission (2012on) COMMISSION REGULATION (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council. Off J Eur Union, pp 1–75. ELI: http://data.europa.eu/eli/reg/2012/601/2014-07-30

  10. European Union (2015on) REGULATION (EU) 2015/757 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2015 on the monitoring, reporting and verification of carbon dioxide emissions from maritime transport, and amending Directive 2009/16/EC. Off J Eur Union. ELI: http://data.europa.eu/eli/reg/2015/757/oj

  11. Goldsworthy L, Goldsworthy B (2015) Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data—An Australian case study. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2014.09.009

    Article  Google Scholar 

  12. Harvald S (1983) Resistance and propulsion of ships. Deparment of Ocean Engineering, TheTechnical University of Denmark, Lyngby

    Google Scholar 

  13. International Maritime Organisation (IMO) (2017) IMO profile—overview. https://business.un.org/en/entities/13. Accessed 20 Aug 2018

  14. International Maritime Organization (2019) Third IMO GHG study 2014. http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Greenhouse-Gas-Studies-2014.aspx. Accessed 16 Sept 2019

  15. International Maritime Organization (2009) Second IMO GHG study 2009. International Maritime Organization, London

    Google Scholar 

  16. International Telecommunication Union (2014) Technical characteristics for an automatic identificatio nsystem using time division multiple access in the VHF maritime mobile frequency band; Recommendation ITU‑R M.1371‑5. M Series; Mobile, radiodetermination, amateur and related satellite services. International Telecommunication Union, Genua

    Google Scholar 

  17. Jalkanen J‑P, Johansson L, Kukkonen J (2016) A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011, pp 71–84

    Google Scholar 

  18. Jalkanen J‑P, Brink A, Kalli J, Petterson H, Kukkonen J, Stipa T (2009) A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos Chem Phys. https://doi.org/10.5194/acp-9-9209-2009

    Article  Google Scholar 

  19. Jalkanen J‑P, Johansson L, Kukkonen J, Brink A, Kalli J, Stipa T (2012) Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos Chem Phys. https://doi.org/10.5194/acp-12-2641-2012

    Article  Google Scholar 

  20. Jalkanen J‑P, Johansson L, Kukkonen J (2014) A comprehensive inventory of the ship traffic exhaust emissions in the Baltic sea from 2006 to 2009. AMBIO. https://doi.org/10.1007/s13280-013-0389-3

    Article  Google Scholar 

  21. Johansson L, Jalkanen J‑P, Kalli J, Kukkonen J (2013) The evolution of shipping emissions and the costs of regulation changes in the northern EU area. Atmos Chem Phys. https://doi.org/10.5194/acp-13-11375-2013

    Article  Google Scholar 

  22. Kristensen HO, Lützen M (2013) Prediction of Resistance and Propulsion Power of Ships—Project no. 2010-56. Emissionsbeslutningsstøttesystem Work Package 2, Report no. 04. University of Southern Denmark and Technical University of Denmark, Lyngby

    Google Scholar 

  23. Lu Q, Zheng J, Ye S, Shen X, Yuan Z, Yin S (2013) Emission trends and source characteristics of SO2, Nox, PM10 and VOcs in the pearl river delta region from 2000 to 2009. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2012.10.062

    Article  Google Scholar 

  24. Mabunda AS, Astito A, Hamdoune S (2014) Ship exhaust real-time monitoring system based on automatic identification system. Int J Comput Appl. https://doi.org/10.5120/17560-8175

    Article  Google Scholar 

  25. Ng S, Loh C, Lin C, Booth V, Chan JW, Agnes CY, Li Y, Lau AK (2013) Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2012.07.070

    Article  Google Scholar 

  26. Olesen HR, Winther M, Christensen J, Ellermann T, Plejdrup M (2013) Ship contribution to air pollution in Denmark—an assessment utilising AIS data. 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Paris

    Google Scholar 

  27. Papanikolaou A (2014) Appendix A: diagrams of regression analysis of basic design values for merchant ships. In: Ship design, p 449

    Google Scholar 

  28. Pitana T, Wakabayashi N, Kobayashi E (2010) Estimation of exhaust emissions of marine traffic using automatic identification system data (case study: Madura strait area, Indonesia). Sydney

    Google Scholar 

  29. Rashidi M, Koto J (2014) Prediction of CO2 emitted by marine transport in Batam-Singapore channel using AIS. J Teknol. https://doi.org/10.11113/jt.v69.3275

    Article  Google Scholar 

  30. Saputra H, Satoto SW, Muvariz MF, Koto J (2015) Estimation of exhaust ship emission from Marine Traffic in the straits of Singapore and Batam waterways using Automatic Identification System (AIS). J Teknol. https://doi.org/10.11113/jt.v77.6687

    Article  Google Scholar 

  31. Song S (2014) Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2013.10.006

    Article  Google Scholar 

  32. Stocker F, Qin D, Plattner G‑L, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Intergovernmental panel on climate change, “climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, New York, Camebridge

    Google Scholar 

  33. Winther M, Christensen JH, Plejdrup MS, Ravn ES, Eriksson ÓF, Kristensen HO (2014) Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2014.03.006

    Article  Google Scholar 

  34. Yau PS, Lee SC, Corbett JJ, Wang C, Cheng Y, Ho KF (2012) Estimation of exhaust emission from ocean-going vessels in Hong Kong. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2012.03.092

Further Reading

  1. Institut für Seeverkehrswirtschaft und Logistik (2016) Shipp Stat Mark Rev 60(5/6):1–84

  2. International Towing Tank Conference, “ITTC—Recommended Procedures,” Resistance, Uncertainty Analysis, Example for Resistance Test, 2002

Download references

Funding

The EmissionSEA project leading to these results receives funding from the Federal Ministry of Transport and Digital Infrastructure under support code 19F2062C.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tina Hensel.

Ethics declarations

Conflict of interest

T. Hensel, C. Ugé and C. Jahn declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hensel, T., Ugé, C. & Jahn, C. Green shipping: using AIS data to assess global emissions. NachhaltigkeitsManagementForum 28, 39–47 (2020). https://doi.org/10.1007/s00550-020-00498-x

Download citation

Keywords

  • Green Shipping
  • Emissions
  • AIS
  • CO2
  • Climate Change