The sustainable use of wood as a regional resource—an ecological assessment of common and new processing technologies for wood poles

Die nachhaltige Nutzung von Holz als regionale Ressource - eine ökologische Bewertung herkömmlicher und neuer Verarbeitungstechnologien für Holzmasten

Abstract

Wood poles, whose load carrying capacity has been used in power and communication networks and street lighting, have a high relevance as carbon storage due to their long-term utilization and their global application. To increase the climate mitigation potential of wood poles by widening their scope of application in the construction sector and thereby substituting energy-intensive construction materials, the wood poles’ inherent properties have to be technically enhanced. New wood processing technologies such as molded wood play a decisive role here, and are also considered more energy and resource efficient than traditional wood processing technologies. This study investigates the environmental performance of molded wood poles and classic roundwood poles by means of three scientific approaches: life cycle assessment, forest ecosystem assessment, and eco-design evaluation of different wood pole concepts. Moreover, their ecological competitiveness is compared to steel and concrete, the prevailing construction materials of today. The findings show that, when compared to other construction materials, wood poles in general and molded wood poles in particular are competitive with respect to their mitigation potential for carbon dioxide emissions and fossil fuel consumption. With respect to resource efficiency, molded wood poles outperform other wood pole concepts as no residues arise from the production process and additional portions of the tree and various other tree species including broad-leaf trees can be used. The procurement of wood from domestic resources instead of imports is recommended when taking into account the shortcomings found in the forest management of the leading wood exporting countries.

Zusammenfassung

Langlebige Holzprodukte wie Holzmasten, deren Tragfähigkeit in Strom- und Kommunikationsnetzen sowie zur Straßenbeleuchtung genutzt wird, sind sowohl als Kohlenstoffspeicher als auch als Substituent für energieintensive Baumaterialien von hoher Relevanz. Um das Klimaschutzpotenzial von Holzmasten durch die Verbreiterung des Anwendungsbereiches im Bausektor und damit die Substituierung von energieintensiven Baumaterialien zu erhöhen, müssen die natürlichen Eigenschaften von Holz technologisch verbessert werden. Neue Holzverarbeitungstechniken wie die Formholztechnologie spielen hier eine entscheidende Rolle, da sie energie- und ressourceneffizienter als herkömmliche Holzverarbeitungstechniken sind. Diese Studie untersucht die Umweltverträglichkeit von Formholzmasten und klassischen Rundholzmasten anhand von drei wissenschaftlichen Ansätzen: Ökobilanzierung zu Holzmasten, Vergleich des Zustands zugehöriger Waldökosysteme und Bewertung des Öko-Designs verschiedener Holzmastkonzepte. Darüber hinaus wird ihre ökologische Wettbewerbsfähigkeit gegenüber Stahl und Beton verglichen, den heutzutage vorherrschenden Baumaterialien. Die Ergebnisse zeigen, dass Holzmasten im Allgemeinen und Formholzmasten im Besonderen im Hinblick auf ihr Minderungspotenzial für Kohlendioxidemissionen oder den Verbrauch fossiler Brennstoffe konkurrenzfähig zu anderen Baumaterialien sind. In Bezug auf die Ressourceneffizienz sind Formholzmasten anderen Holzmastkonzepten überlegen, da bei ihrer Herstellung keine Reste entstehen und mehr Baumteile und Baumarten, insbesondere auch Laubhölzer, genutzt werden können. Die Beschaffung von Holz aus heimischen Ressourcen anstelle von Importen ist zu empfehlen, wenn man die Defizite in der Waldbewirtschaftung der führenden holzexportierenden Länder berücksichtigt.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdullah SA, Nakagoshi N (2007) Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. Forest Ecol Manag 241:39–48. https://doi.org/10.1016/j.foreco.2006.12.016

    Article  Google Scholar 

  2. African Regional Workshop (1998) Lophira alata: workshop conservation & sustainable management of trees, Zimbabwe, july 1996. The IUCN red list of threatened species 1998. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  3. Ashton P (1998) Shorea acuminate, shorea bullata, shorea pauciflora, shorea curtisii: the IUCN red list of threatened species 1998. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  4. Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482. https://doi.org/10.1126/science.1118051

    Article  Google Scholar 

  5. Bansal P, Roth K (2000) Why companies go green: a model of ecological responsiveness. Acad Manage J 43:717–736. https://doi.org/10.2307/1556363

    Article  Google Scholar 

  6. Baumann H, Boons F, Bragd A (2002) Mapping the green product development field: Engineering, policy and business perspectives. J Clean Prod 10:409–425. https://doi.org/10.1016/S0959-6526(02)00015-X

    Article  Google Scholar 

  7. BDEW, Statista (2018) Verkabelungsgrad des Stromnetzes in Deutschland nach Spannungsebene im Jahresvergleich 1993 und 2013. https://de.statista.com/statistik/daten/studie/316233/umfrage/verkabelungsgrad-des-stromnetzes-in-deutschland-nach-spannungsebene/. Accessed 16 Mar 2018

  8. BDEW (2018) Deutsches Stromnetz ist 1,8 Mio. Kilometer lang. Bundesverband der Energie- und Wasserwirtschaft e. V., Berlin. https://www.bdew.de/presse/presseinformationen/zahl-der-woche-184-millionen-kilometer/. Accessed 23 Mar 2020

    Google Scholar 

  9. BDEW (2017) Entwicklung der Stromnetze in Deutschland: vorläufige Zahlen für 2016. Bundesverband der Energie- und Wasserwirtschaft e. V, Berlin

    Google Scholar 

  10. BEW (1993) Ökoinventare für Energiesysteme. Bundesamt für Energiewirtschaft, Bern

    Google Scholar 

  11. BMEL (2014) Nationale Politikstrategie Bioökonomie: Nachwachsende Ressourcen und biotechnologische Verfahren als Basis für Ernährung, Industrie und Energie. Bundesministerium für Ernährung und Landwirtschaft, Berlin

    Google Scholar 

  12. BMU (2007) National strategy on biological diversity. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin

    Google Scholar 

  13. Bolin CA, Smith ST (2011) Life cycle assessment of pentachlorophenol-treated wooden utility poles with comparisons to steel and concrete utility poles. Renew Sust Energ Rev 15:2475–2486. https://doi.org/10.1016/j.rser.2011.01.019

    Article  Google Scholar 

  14. Brones F, de Carvalho MM, de Senzi Zancul E (2014) Ecodesign in project management: a missing link for the integration of sustainability in product development? J Clean Prod 80:106–118. https://doi.org/10.1016/j.jclepro.2014.05.088

    Article  Google Scholar 

  15. Calkins M (2009) Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials, Wiley book on sustainable design. Wiley, Hoboken

    Google Scholar 

  16. von Carlowitz HC (1713) Sylvicultura oeconomica, oder haußwirthliche Nachricht und naturmäßige Anweisung zur Wilden Baum Zucht. J. Fr. Braun, Leipzig

  17. Charter M, Tischner U (2001) Sustainable solutions: developing products and services for the future. Greenleaf Publishing, Sheffield

    Google Scholar 

  18. Deuringer J (2002) 150 Jahre oberirdische Linienführung – Teil 2: Unterrichtsblatt Nr. 09/2002. Deutsche Telekom, Hamburg, pp 452–463

    Google Scholar 

  19. DIN (2006) Environmental management—Life cycle assessment—Requirements and guidelines (DIN EN ISO 14044:2006). DIN Deutsches Institut für Normung e. V. Beuth Verlag GmbH, Berlin

  20. DIN (2018) Environmental management systems—Guidelines for incorporating ecodesign (ISO/DIS 14006:2018). Draft version. DIN Deutsches Institut für Normung e. V. Beuth Verlag GmbH, Berlin

  21. European Commission (2012) Innovating for sustainable growth: a bioeconomy for Europe. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. European Commission, Brussels

    Google Scholar 

  22. FAO (2012) FRA 2015: terms and definitions. Forest resources and assessment working paper 180. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  23. FAO (2015) Global forest resources assessment 2015: desk reference. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  24. FAO (2016) Global forest resources assessment 2015: how are the world’s forests changing? 2nd edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  25. Farjon A (2013) Pinus taeda, pseudotsuga menziesii: the IUCN red list of threatened species 2013. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  26. Farjon A (2017) Picea abies: the IUCN red list of threatened species 2017. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  27. Finnish ThermoWood Association (2003) ThermoWood® Handbook. Finnish ThermoWood Association, Helsinki

    Google Scholar 

  28. Franco-Santos M, Lucianetti L, Bourne M (2012) Contemporary performance measurement systems: a review of their consequences and a framework for research. Manage Account Res 23:79–119. https://doi.org/10.1016/j.mar.2012.04.001

    Article  Google Scholar 

  29. Frischknecht R, Jungbluth N, Althaus H‑J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework (7 pp). Int J Life Cycle Assess 10:3–9. https://doi.org/10.1065/lca2004.10.181.1

    Article  Google Scholar 

  30. FSC (2015) Facts & figures September 15. Forest Stewardship Council, Bonn

    Google Scholar 

  31. FSC (2017) Forest Stewardship Council. https://www.fsc.org. Accessed 28 June 2017

  32. FSC (2018) Updated certified Forest Management and Area per Country 2009-2011. Personal communication with the Forest Stewardship Council on 14.2.2018

  33. Gardner M (2013) Pinus sylvestris: The IUCN Red List of Threatened Species 2013. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  34. Guinée JB (2002) Handbook on life cycle assessment: operational guide to the ISO standards, Eco-efficiency in industry and science vol 7. Kluwer Academic Publ, Dordrecht, Boston, London

    Google Scholar 

  35. Gulbrandsen LH (2010) Transnational environmental governance: the emergence and effects of the certification of forests and fisheries. Edward Elgar, Cheltenham

    Google Scholar 

  36. Haller P, Heiduschke A, Putzger R, Cherif C, Trümper W, Hufenbach W, Thieme M, Günther E, Manthey C, Hamann M, Kubowitz P, Lemke Y, Schäcke A, Untergutsch A, Birk T, Hofmann M, Thompson R, Fandler J (2011) Hochleistungsholztragwerke – HHT – Entwicklung von hochbelastbaren Verbundbauweisen im Holzbau mit faserverstärkten Kunststoffen, technischen Textilien und Formpressholz. Dresden, Berlin, Kleinheubach. Abschlussbericht, BMBF-Vorhaben 0330722A‑C

    Google Scholar 

  37. Haller P, Putzger R, Wehsener J, Hartig J (2013) Formholzrohre—Stand der Forschung und Anwendungen. Bautechnik 90:34–41. https://doi.org/10.1002/bate.201200065

    Article  Google Scholar 

  38. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  39. Hartig JU, Facchini S, Haller P (2018) Investigations on lateral vehicle impact on moulded wooden tubes made of beech (Fagus sylvatica L.). Constr Build Mater 174:547–558. https://doi.org/10.1016/j.conbuildmat.2018.04.132

    Article  Google Scholar 

  40. Hartig JU, Wehsener J, Haller P (2016) Experimental and theoretical investigations on moulded wooden tubes made of beech (Fagus sylvatica L.). Constr Build Mater 126:527–536. https://doi.org/10.1016/j.conbuildmat.2016.09.042

    Article  Google Scholar 

  41. Hofstetter P (1998) Perspectives in life cycle impact assessment: a structured approach to combine models of the technosphere, ecosphere and valuesphere. Springer, Boston

    Google Scholar 

  42. Hrvatske šume (2010) Forests and forestry of Croatia. Presentation, Zagreb. http://www.sumari.hr/efn/croatia.pdf. Accessed 9 Mar 2018

  43. ifu (2014) Umberto® NXT LCA 7.1.8. ifu Hamburg GmbH, Hamburg

    Google Scholar 

  44. ISO (2007) Durability of wood and wood-based products—Use classes (ISO 21887:2007). International Organization for Standardization, Geneva

    Google Scholar 

  45. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x

    Article  Google Scholar 

  46. Künniger T, Richter K (1995) Ökologischer Vergleich von Freileitungsmasten aus imprägniertem Holz, armierten Beton und korrosionsgeschütztem Stahl. Eidg. Materialprüfungs- und Forschungsanstalt (EMPA), Dübendorf (Forschungsbericht)

    Google Scholar 

  47. Kutnar A, Sandberg D (2015) Next steps in developing thermally modified timber to meet requirements of European low carbon economy. Int Wood Prod J 6:8–13. https://doi.org/10.1179/2042645314Y.0000000079

    Article  Google Scholar 

  48. Kutnar A, Sandberg D, Haller P (2015) Compressed and moulded wood from processing to products—a review. Holzforschung. https://doi.org/10.1515/hf-2014-0187

    Article  Google Scholar 

  49. Levasseur A, Lesage P, Margni M, Samson R (2012) Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 17:117–128. https://doi.org/10.1111/j.1530-9290.2012.00503.x

    Article  Google Scholar 

  50. Magagnotti N, Spinelli R (2011) Financial and energy cost of low-impact wood extraction in environmentally sensitive areas. Ecol Eng 37:601–606. https://doi.org/10.1016/j.ecoleng.2010.12.021

    Article  Google Scholar 

  51. Malets O (2015) When transnational standards hit the ground: domestic regulations, compliance assessment and forest certification in Russia. J Environ Pol Plan 17:332–359. https://doi.org/10.1080/1523908X.2014.947922

    Article  Google Scholar 

  52. Malets O (2017) Recursivity by organizational design: the case of the forest stewardship council. Glob Policy 8:343–352. https://doi.org/10.1111/1758-5899.12413

    Article  Google Scholar 

  53. May N, Guenther E, Haller P (2017) Environmental indicators for the evaluation of wood products in consideration of site-dependent aspects: a review and integrated approach. Sustainability 9:1897. https://doi.org/10.3390/su9101897

    Article  Google Scholar 

  54. MCPFE (2003) Improved Pan-European Indicators for Sustainable Forest Managementas adopted by the MCPFE Expert Level Meeting 7–8 October 2002, Ministerial Conference on the Protection of Forests in Europe (MCPFE). Vienna

    Google Scholar 

  55. Moog S, Spicer A, Böhm S (2015) The politics of multi-stakeholder initiatives: the crisis of the forest stewardship council. J Bus Ethics 128:469–493. https://doi.org/10.1007/s10551-013-2033-3

    Article  Google Scholar 

  56. Navi P, Sandberg D (2012) Thermo-hydro-mechanical wood processing. EFPL Press, New York

    Google Scholar 

  57. NAWPC (2001) Wood materials used as a means to reduce greenhouse gases (GHG): an examination of wooden utility poles. North American Wood Pole Coalition. Technical Bulletin

    Google Scholar 

  58. NAWPC (2016) Estimated service life of wood poles. North American Wood Pole Council. Technical Bulletin

    Google Scholar 

  59. NAWPC (2017) “Wood equivalent” utility poles and the NESC. North American Wood Pole Council. Technical Bulletin

    Google Scholar 

  60. NREL (2009) U.S. LCI Database: Softwood logs with bark, harvested at average intensity site. National Renewable Energy Laboratory, Golden

    Google Scholar 

  61. OECD (1993) Core set of indicators for environmental performance reviews: a synthesis report by the group on the state of the environment. OCDE/GD(93)179, Environment Monographs No 83. Organisation for Economic Co-Operation and Development, Paris

    Google Scholar 

  62. OECD (2013) OECD series on emission scenario documents no.2: Revisded emission document for wood preservatives. ENV/JM/MONO(2013)21. Organisation for Economic Co-Operation and Development (OECD), Paris

    Google Scholar 

  63. PEFC (2017) Programme for the endorsement of forest certification. https://www.pefc.org. Accessed 28 June 2017

  64. PEFC (2010) PEFC Annual Review 2010: Integrating society in sustainable forest management. Programme for the Endorsement of Forest Certification,. PEFC, Geneva

    Google Scholar 

  65. PEFC (2015) PEFC annual review 2015: seeing the bigger picture. Programme for the endorsement of forest certification. PEFC, Geneva

    Google Scholar 

  66. Pooma R, Newman M (2017) Shorea leprosula: the IUCN Red List of Threatened Species 2017. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  67. Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:e1600821. https://doi.org/10.1126/sciadv.1600821

    Article  Google Scholar 

  68. Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I, Karpachevskiy M, Kostikova A, Manisha A, Tsybikova E, Zhuravleva I (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2):51

    Article  Google Scholar 

  69. Poulikidou S (2012) Methods and tools for environmentally friendly product design and development: Identification of their relevance to the vehicle design context. Literatur review. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  70. PRé Sustainability (2008) SimaPro 7.1.8. PRé Sustainability, LE Amersfoort

    Google Scholar 

  71. Radkau J, Schäfer I (2007) Holz: Wie ein Naturstoff Geschichte schreibt, Stoffgeschichten, 3rd edn. Oekom, München

    Google Scholar 

  72. Rivers MC, Barstow M (2017) Fagus sylvatica: the IUCN red list of threatened species 2017. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  73. von Roon S, Sutter M, Samweber F, Wachinger K (2014) Netzausbau in Deutschland: Wozu werden neue Stromnetze benötigt? vol 15. Konrad Adenauer Stiftung, Berlin

    Google Scholar 

  74. Rossi M, Germani M, Zamagni A (2016) Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. J Clean Prod 129:361–373. https://doi.org/10.1016/j.jclepro.2016.04.051

    Article  Google Scholar 

  75. Rousseaux P, Gremy-Gros C, Bonnin M, Henriel-Ricordel C, Bernard P, Floury L, Staigre G, Vincent P (2017) “Eco-tool-seeker”: A new and unique business guide for choosing ecodesign tools. J Clean Prod 151:546–577. https://doi.org/10.1016/j.jclepro.2017.03.089

    Article  Google Scholar 

  76. Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8:64–88. https://doi.org/10.1080/17480272.2012.751935

    Article  Google Scholar 

  77. Sandberg D, Kutnar A (2015) Modification, product properties, and environmental impacts in thermal wood processing. In: Barnes HM, Herian VL (eds) Proceedings of the 58th International Convention of Society of Wood Science and Technology, Grand Teton National Park, 7–12. June 2015, pp 71–81

  78. Sharma J, Chaturvedi RK, Bala G, Ravindranath NH (2013) Assessing “inherent vulnerability” of forests: a methodological approach and a case study from Western Ghats, India. Mitig Adapt Strat Glob Change 20:573–590. https://doi.org/10.1007/s11027-013-9508-5

    Article  Google Scholar 

  79. Shrestha SP, Lanford BL, Rummer RB, Dubois M (2005) Utilization and cost of log production from animal logging operations. Int J Eng 16:167–180. https://doi.org/10.1080/14942119.2005.10702524

    Article  Google Scholar 

  80. Spangenberg JH, Pfahl S, Deller K (2002) Towards indicators for institutional sustainability: lessons from an analysis of Agenda 21. Ecol Indic 2:61–77. https://doi.org/10.1016/S1470-160X(02)00050-X

    Article  Google Scholar 

  81. Speckbacher G, Bischof J, Pfeiffer T (2003) A descriptive analysis on the implementation of balanced scorecards in German-speaking countries. Manage Account Res 14:361–388. https://doi.org/10.1016/j.mar.2003.10.001

    Article  Google Scholar 

  82. Statista (2020) Global demand for carbon fiber from 2010 to 2022. https://www.statista.com/statistics/380538/projection-demand-for-carbon-fiber-globally/. Accessed 7 Mar 2020

  83. TEEB (2010) The economics of ecosystems and biodiversity ecological and economic foundations: chapter 1 integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. Pushpam Kumar, Earthscan, London, Washington

    Google Scholar 

  84. Thomas P (2013) Araucaria angustifolia: The IUCN Red List of Threatened Species 2013. http://www.iucnredlist.org/search. Accessed 10 Mar 2018

  85. Thünen-Institut (2012) Dritte Bundeswaldinventur: Ergebnisdatenbank. https://bwi.info. Accessed 12 Mar 2018

  86. UBA (2018) Nationale Treibhausgas-Inventare 1990 bis 2017: Schätzung 2017. Umweltbundesamt, Dessau

    Google Scholar 

  87. UNCED (1992) Agenda 21: Chapter 11 combating deforestation. United Nations Conference on Environment and Development (UNCED). Rio de Janerio, Brazil, 3 to 14 June 1992, United Nations, New York. https://sustainabledevelopment.un.org/outcomedocuments/agenda21. Accessed 3 Oct 2017

  88. United Nations (1992) Forest Principles: A/CONF.151/26 (Vol. III). Non-legally binding authoritative statement of principles for a global consensus on the management, conservation and sustainable development of all types of forests. United Nations Conference on Environment and Development (UNCED), Rio de Janeiro, 03.-14.06.1992 (http://www.un.org/documents/ga/conf151/aconf15126-3annex3.htm. Accessed 3 October 2017)

    Google Scholar 

  89. USEPA (2009) TRACI: tool for the reduction and assessment of chemical and other environmental impacts. U.S. environmental protection agency. USEPA, Cincinnati

    Google Scholar 

  90. VDI (2016) VDI 4800 part 1: resource efficiency—methodological principles and strategies. Verein Deutscher Ingenieure e. V., Düsseldorf

    Google Scholar 

  91. von Vegesack A (1987) Das Thonet Buch. Bangert, München

    Google Scholar 

  92. Vester F (1986) Ein Baum ist mehr als ein Baum: Ein Fensterbuch, 2nd edn. Kösel, München

    Google Scholar 

  93. WBCSD, EPE (1999) European eco-efficiency initiatives: a road map for business strategy and government action. World Business Council for Sustainable Development (WBCSD), European Partners for the Environment (EPE), Brussels

    Google Scholar 

  94. WCED (1987) Report of the world commission on environment and development: our common future. Brundtland Report

    Google Scholar 

  95. Werner F, Althaus H‑J, Künniger T, Richter K, Jungbluth N (2007) Life cycle inventories of wood as fuel and construction material: final report ecoinvent 2000 no. 9. EMPA, Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  96. Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  97. Wicke B, Sikkema R, Dornburg V, Faaij A (2011) Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28:193–206. https://doi.org/10.1016/j.landusepol.2010.06.001

    Article  Google Scholar 

  98. Wolfslehner B, Vacik H (2008) Evaluating sustainable forest management strategies with the analytic network process in a pressure-state-response framework. J Environ Manage 88:1–10. https://doi.org/10.1016/j.jenvman.2007.01.027

    Article  Google Scholar 

  99. World Bank (2018) World bank open data: forest area (% of land area) 2015. https://data.worldbank.org/indicator/AG.LND.FRST.ZS. Accessed 13 Mar 2018

Download references

Funding

This work was financially supported by the Federal Ministry of Education and Research (BMBF) in the scope of the leading-edge cluster BioEconomy (grant number 031A068A/PtJ, project 1.4 “Faserverstärkte Formholzprodukte aus Buche”; grant number 031A441A/PtJ, project “Masten aus Form- und Furnierholz in Buche”, VP1.12 BEECHPOLE).

The public sponsor had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, and in the decision to publish the results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edeltraud Günther.

Ethics declarations

Conflict of interest

N. May, E. Günther and P. Haller declare that they have no competing interests.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

May, N., Günther, E. & Haller, P. The sustainable use of wood as a regional resource—an ecological assessment of common and new processing technologies for wood poles. NachhaltigkeitsManagementForum 27, 177–201 (2019). https://doi.org/10.1007/s00550-020-00491-4

Download citation

Keywords

  • Molded wood pole
  • Environmental performance
  • Multi-criteria decision support
  • Life cycle assessment
  • Forest ecosystem
  • Eco-design

Schlüsselwörter

  • Formholzmast
  • Umweltleistung
  • Multikriterielle Entscheidungsunterstützung
  • Ökobilanzierung
  • Waldökosystem
  • Öko-Design