Advertisement

uwf UmweltWirtschaftsForum

, Volume 24, Issue 1, pp 25–28 | Cite as

Ökobilanzierer auf Datensuche

Neuronale Netze zur Umweltwirkungsbewertung von Chemikalien
  • Mieke Klein
  • Marten Stock
Schwerpunktthema
  • 97 Downloads

Abstract

Data gaps are a challenge for the majority of life cycle assessments. This paper describes how a database, containing pre-calculated values for cumulated energy demand, carbon footprint and Eco-indicator for over 14 000 chemicals was realized. The FineChem-Tool was used to calculate the indicators by artificial neural networks.

Literatur

  1. Bretz R, Frankhauser P (1996) Neural Networks: A Systematic Introduction. Springer, BerlinGoogle Scholar
  2. ChemAxon (2014) API Marvin JS, 14.10.13. ChemAxon, BudapestGoogle Scholar
  3. Daylight Chemical Information Systems, Inc. (2011) Daylight Theory Manual. http://www.daylight.com/dayhtml/doc/theory/index.html. Zugegriffen: 12. Feb. 2016Google Scholar
  4. ifu Hamburg GmbH (2014) EstiMol. http://www.umberto.de/en/estimol/estimol-data/. Zugegriffen: 11. Feb. 2016Google Scholar
  5. Klöpffer W, Grahl B (2014) Life Cycle Assessment (LCA): A Guide to Best Practice. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  6. National Center for Biotechnology Information (o.J.) The PubChem Project. http://pubchem.ncbi.nlm.nih.gov. Zugegriffen: 22. Jan. 2015
  7. Rojas R (1996) Neural networks: A systematic introduction. Springer, BerlinCrossRefGoogle Scholar
  8. Steinemann Z, Venkatesh A, Hauck M, Schipper A, Karuppiah R, Laurenzi I, Huijbregts M (2014) How to address data gaps in life cycle inventories: A case study on estimating CO2 emissions from coal-fired electricity plants on a global scale. Environ Sci Technol 48(9):5282–5289CrossRefGoogle Scholar
  9. Wernet G, Papadokonstantakis S, Hellweg S, Hungerbühler K (2009) Bridging data gaps in environmental assessments: Modeling impacts of fine and basic chemical production. Green Chem 11(11):1826–1831CrossRefGoogle Scholar
  10. Wernet G, Hellweg S, Fischer U, Papadokonstantakis S, Hungerbühler K (2008) Molecular-structure-based models of chemical inventories using neural networks. Environ Sci Technol 42(17):6717–6722CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ifu Hamburg GmbHHamburgDeutschland

Personalised recommendations