Effect of 3 nm gate length scaling in junctionless double surrounding gate SiNT MOSFET by using triple material gate engineering

Abstract

In this work, drain current ID for 3 nm gate length of triple material (TM) double surrounding gate (DSG) inversion mode (IM) and junctionless (JL) Si nanotube (SiNT) MOSFET has been studied and simulation results are reported using Silvaco ATLAS 3D TCAD. In this device we consider the Non Equilibrium Green’s Function (NEGF) approach and self-consistent solution of Poisson’s equation with Schrodinger’s equation. The channel region is lightly doped in case of IM SiNT MOSFET. The effect of TM Gate Engineering for SiNT channel radius 1.5 nm and gate oxide (SiO2) thickness of 0.8 nm on ID, has been studied. Also comparison of results has been done between IM TM DSG and JL TM DSG SiNT. For a reasonable comparison between Junctionless and Inversion Mode SiNT, in Junctionless SiNT, doping concentration is optimized for two concerns (i) to get the same threshold voltage (VTH) as IM SiNT and (ii) to get the same ION current as IM SiNT MOSFET. This results in 103 times smaller IOFF in both matching VTH and ION optimized device as compared to IM SiNT MOSFET. It was found that TM Gate Engineering reduces drain induced barrier lowering (DIBL) in JL SiNT. JL SiNT MOSFET has a smaller DIBL ~ 61.02 mV/V, almost an ideal SS ~ 60 mV/dec and higher ION/IOFF ratio ~ 2.63 × 109 as compared to available CGAA literature device results.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Padmanaban B, Ramesh R, Nirmal D, Sathiyamoorthy S (2015) Numerical modeling of triple material gate stack gate all-around (TMGSGAA) MOSFET considering quantum mechanical effects. Superlattices Microstruct 82:40–54

    Article  Google Scholar 

  2. Baidya A, Baishya S, Lenk TR (2017) Impact of thin high-k dielectrics and gate metals on RF characteristics of 3D double gate junctionless transistor. Mater Sci Semicond Process 71:413–420

    Article  Google Scholar 

  3. Baruah RK, Paily RP (2014) A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans Electron Devices 61:123–128

    Article  Google Scholar 

  4. Boukortt N, Hadri B, Patane S, Caddemi A, Crupi G (2017) Investigation on TG n-FinFET parameters by varying channel doping concentration and gate length. Silicon 9:885–893

    Article  Google Scholar 

  5. Colinge JP, Kranti A, Yan R, Lee CW, Ferain I, Yu R, Akhavan ND, Razavi P (2011) Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron 65:33–37

    Article  Google Scholar 

  6. Das UK, Bardon MG, Jang D, Eneman G, Schuddinck P, Yakimets D, Raghavan P, Groeseneken G (2017) Limitations on lateral nanowire scaling beyond 7nm node. IEEE Electron Device Lett 38:9–11

    Article  Google Scholar 

  7. Das UK, Eneman G, Velampati RSR, Chauhan YS, Jinesh KB, Bhattacharyya TK (2018) Consideration of UFET architecture for the 5 nm node and beyond logic transistor. J Electron Devices Soc 6:1129–1135

    Article  Google Scholar 

  8. Guin S, Sil M, Malik A (2017) Comparison of logic performance of CMOS circuits implemented with junctionless and inversion-mode FinFETs. IEEE Trans Electron Dev 64:953–959

    Article  Google Scholar 

  9. Jena B, Pradhan KP, Sahu PK, Dash D, Mishra GP, Mohapatra SK (2015a) Investigation on cylindrical gate all around (GAA) to nanowire MOSFET for circuit application. Electronics Energ 28:637–643

    Google Scholar 

  10. Jena B, Pradhan KP, Dash D, Mishra GP, Sahu PK, Mohapatra SK (2015b) Performance analysis of undoped cylindrical gate all around (GAA) MOSFET at subthreshold regime. Adv Nat Sci Nanosci Nanotechnol 6:035010

    Article  Google Scholar 

  11. Kai H, Xiaolei W, Hong Y, Wenwu W (2015) Electric dipole formation at high-k dielectric/SiO2 interface. J Semicond 36:036004–036013

    Article  Google Scholar 

  12. Kasturi P, Saxena M, Gupta M, Gupta RS (2008) Dual material double-layer gate stack son mosfet: a novel architecture for enhanced analog performance—part I: impact of gate metal workfunction engineering. IEEE Trans Electron Devices 55:372–381

    Article  Google Scholar 

  13. Kita K, Toriumi A (2009) Origin of electric dipoles formed at high-k/SiO2 interface. Appl Phys Lett 94:132902–132903

    Article  Google Scholar 

  14. Kundu A, Dasgupta A, Das R, Chakraborty S, Dutta A, Sarkar CK (2016) Influence of underlap on gate stack DG-MOSFET for analytical study of analog/RF performance. Superlattices Microstruct 94:60–73

    Article  Google Scholar 

  15. Lee CW, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) Performance estimation of junctionless multigate transistors. Solid State Electron 54:97–103

    Article  Google Scholar 

  16. Lema FA, Wang X, Amoroso SM, Riddet C, Cheng B, Shifren L, Aitken R, Sinha S, Yeric G, Asenov A (2014) Performance and variability of doped multithreshold FinFETs for 10-nm CMOS. IEEE Trans Electron Devices 61:3372–3378

    Article  Google Scholar 

  17. Liao YB, Chiang MH, Damrongplasit N, Hsu WC, Liu TJK (2014) Design of gate-all-around silicon MOSFETs for 6-T SRAM area efficiency and yield. IEEE Trans Electron Devices 61:2371–2377

    Article  Google Scholar 

  18. Lime F, Moldovan O, Iñiguez B (2014) A compact explicit model for long-channel gate-all-around junctionless MOSFETs. Part I: DC characteristics. IEEE Trans Electron Devices 61:3036–3041

    Article  Google Scholar 

  19. Mohankumar N, Syamal B, Sarkar CK (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans Electron Devices 57:820–826

    Article  Google Scholar 

  20. Moldovan O, Lime F, Iniguez B (2014) A compact explicit model for long-channel gate-all-around junctionless MOSFETs. Part-II: total charges and intrinsic capacitance characteristics. IEEE Trans Electron Devices 61:3042–3046

    Article  Google Scholar 

  21. Moon D, Choi SJ, Duarte JP, Choi YK (2013) Investigation of silicon nanowire gate-all-around junctionless transistor built on a bulk substrate. IEEE Transaction Electron Devices 60:1355–1360

    Article  Google Scholar 

  22. Nagy D, Indalecio G, Loureiro AJG, Elmessary MA, Kalna K, Seoane N (2018) FinFET versus gate-all-around nanowire FET: performance, scaling and variability. IEEE J Electron Devices Soc 6:332–340

    Article  Google Scholar 

  23. Pott V, Moselund KE, Bouvet D, Michielis LD, Ionescu AM (2008) Fabrication and characterization of gate-all-around silicon nanowires on bulk silicon. IEEE Trans Nanotechnol 7:733–744

    Article  Google Scholar 

  24. Pouydebasque A, Denorme S, Loubet N, Wacquez R, Bustos J, Leverd F, Deloffre E, Barnola S, Dutartre D, Coronel P, Skotnicki T (2008) High-Performance High-K/Metal Planar Self-Aligned Gate-All-Around CMOS Devices. IEEE Trans Nanotechnol 7:551–557

    Article  Google Scholar 

  25. Pratap Y, Kumar M, Kabra S, Haldar S, Gupta RS, Gupta M (2017) Analytical modeling of gate-all-around junctionless transistor based biosensor for detection of neural biomolecule species. J Comput Electrons 17:288–296

    Article  Google Scholar 

  26. Razavi P, Fagas G (2013) Electrical performance of III-V gate-all-around nanowire transistors. Appl Phys Lett 103:063506

    Article  Google Scholar 

  27. Rewari S, Nath V, Haldar S, Deswal SS, Gupta RS (2017) Novel design to improve band to band tunnelling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET. Springer Microsyst Technol 25:1537–1546

    Article  Google Scholar 

  28. Robertson J, Falabretti B (2006) Band offsets of high-k gate oxides on III-V semiconductors. J Appl Phys 100:014111–014118

    Article  Google Scholar 

  29. Sahay S, Kumar MJ (2016) Controlling L-BTBT and volume depletion in nanowire JLFETs using core-shell architecture. IEEE Trans Electron Device 63:3790–3794

    Article  Google Scholar 

  30. Sahay S, Kumar MJ (2017) Symmetric operation in an extended back gate JLFET for scaling to the 5-nm regime considering quantum confinements. IEEE Trans Electron Devices 64:21–27

    Article  Google Scholar 

  31. Sahay S, Kumar MJ (2017) Spacer design guidelines for nanowire fets from gate-induced drain leakage perspective. IEEE Trans Electron Devices 64:3007–3015

    Article  Google Scholar 

  32. Sanjay BP, Vohra A (2020) Dual material gate engineering to reduce DIBL in cylindrical GateAll around Si nanowire MOSFET for 7-nm gate length. Semiconductors 54:1490–1495

    Article  Google Scholar 

  33. Sharma RK, Gupta R, Gupta M, Gupta RS (2009) Dual Material Double-Gate SOI n-MOSFET: Gate Misalignment Analysis. IEEE Trans Electron Devices 56:1284–1291

    Article  Google Scholar 

  34. Silvaco T-CAD Version: ATLAS 5.19.20.R, 2020

  35. Su CJ, Tsai T, Liou YL, Lin ZM, Lin HC, Chao TS (2011) Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels. IEEE Electron Device Lett 32:521–523

    Article  Google Scholar 

  36. Tayal S, Nandi A (2018) Optimization of gate-stack in junctionless Si-nanotube FET for analog/RF applications. Mater Sci Semicond Process 80:63–67

    Article  Google Scholar 

  37. Tekleab D (2014) Device Performance of silicon nanotube MOSFETS field effect transistor. IEEE Electron Device Lett 35:506–508

    Article  Google Scholar 

  38. Wong H, Iwai H (2006) On the scaling issues and high-k dielectric replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron Eng 83:1867–1904

    Article  Google Scholar 

  39. Zhang X, Connelly D, Zheng P, Takeuchi H, Hytha M, Mears RJ, Liu TJK (2016) Analysis of 7/8-nm bulk-Si FinFET technologies for 6T-SRAM scaling. IEEE Trans Electron Devices 63:1502–1507

    Article  Google Scholar 

  40. Zheng P, Liao YB, Damrongplasit N, Chiang MH, Liu TJK (2014) Variation-aware comparative study of 10-nm GAA versus FinFET 6-T SRAM performance and yield. IEEE Trans Electron Devices 61:3949–3954

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Sanjay) acknowledges the financial support in the form of SRF from University Grants Commission (UGC), New Delhi, India during the course of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjay.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanjay, Prasad, B. & Vohra, A. Effect of 3 nm gate length scaling in junctionless double surrounding gate SiNT MOSFET by using triple material gate engineering. Microsyst Technol (2021). https://doi.org/10.1007/s00542-020-05182-0

Download citation