Optimal reconfiguration of capacitor based radial distribution system using chaotic quasi oppositional chemical reaction optimization

Abstract

This paper develops an improved version of the chemical reaction optimization (CRO) algorithm based on the opposition-based learning (OBL) strategy named quasi-oppositional CRO (QOCRO) for optimal reconfiguration of a power system to minimize power loss of the network. Furthermore, to avoid suboptimal solutions and to increase the convergence rate, chaotic behavior is mapped with QOCRO, which results in chaotic QOCRO (CQOCRO). The reconfiguration technique can minimize power loss up to a certain level. Further power loss reduction may be accomplished by locating the capacitor in the optimal location. To investigate the performance of the proposed CQOCRO, QOCRO, and CRO approaches, they are successfully implemented on two test systems, namely 33-bus and 69-bus radial distribution systems. Moreover, the numerical results are compared with other population-based optimization techniques like krill herd (KH) algorithm, oppositional krill herd (OKH) algorithm, and fuzzy approach. The computational results reveal that CQOCRO is superior to QOCRO, CRO, and other algorithms available in the literature in this domain. Finally, a convergence graph is given to identify the convergence superiority of CQOCRO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abul’Wafa AR (2013) Optimal capacitor allocation in radial distribution systems for loss reduction: a two stage method. Electr. Power Syst Res 95:168–174. https://doi.org/10.1016/j.epsr.2012.09.004

    Article  Google Scholar 

  2. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for dg allocation in primary distribution network. Int J Electr Power Energy Syst 28(10):669–678. https://doi.org/10.1016/j.ijepes.2006.02.013

    Article  Google Scholar 

  3. Ali E, Elazim SA, Abdelaziz A (2017) Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renew Energy 101:1311–1324. https://doi.org/10.1016/j.renene.2016.09.023

    Article  Google Scholar 

  4. Arun M, Aravindhababu P (2010) Fuzzy based reconfiguration algorithm for voltage stability enhancement of distribution systems. Expert Syst Appl 37(10):6974–6978. https://doi.org/10.1016/j.eswa.2010.03.022

    Article  Google Scholar 

  5. Banerjee S, Chanda C, Das D (2013) Reconfiguration of distribution networks based on fuzzy multiobjective approach by considering loads of different types. J Inst Eng (India) Ser B 94(1):29–42. https://doi.org/10.1007/s40031-013-0043-2

    Article  Google Scholar 

  6. Bhattacharjee K, Bhattacharya A, nee Day SH (2013) Chemical reaction optimisation for different economic dispatch problems. IET Gener Transm Distrib 8(3):530–541. https://doi.org/10.1049/iet-gtd.2013.0122

    Article  Google Scholar 

  7. Biswas PP, Mallipeddi R, Suganthan PN, Amaratunga GA (2017) A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. Appl Soft Comput 60:268–280. https://doi.org/10.1016/j.asoc.2017.07.004

    Article  Google Scholar 

  8. Das D (2008) Optimal placement of capacitors in radial distribution system using a fuzzy-ga method. Int J Electr Power Energy Syst 30(6–7):361–367. https://doi.org/10.1016/j.ijepes.2007.08.004

    Article  Google Scholar 

  9. de Oliveira LW, Carneiro S Jr, De Oliveira EJ, Pereira J, Silva IC Jr, Costa JS (2010) Optimal reconfiguration and capacitor allocation in radial distribution systems for energy losses minimization. Int J Electr Power Energy Syst 32(8):840–848. https://doi.org/10.1016/j.ijepes.2010.01.030

    Article  Google Scholar 

  10. Franco JF, Rider MJ, Lavorato M, Romero R (2013) A mixed-integer lp model for the reconfiguration of radial electric distribution systems considering distributed generation. Electr Power Syst Res 97:51–60. https://doi.org/10.1016/j.epsr.2012.12.005

    Article  Google Scholar 

  11. González A, Echavarren F, Rouco L, Gómez T, Cabetas J (2012) Reconfiguration of large-scale distribution networks for planning studies. Int J Electr Power Energy Syst 37(1):86–94. https://doi.org/10.1016/j.ijepes.2011.12.009

    Article  Google Scholar 

  12. Kashem M, Ganapathy V, Jasmon G, Buhari M (2000) A novel method for loss minimization in distribution networks In Drpt2000. international conference on electric utility deregulation and restructuring and power technologies. In: Proceedings (cat. no. 00ex382), pp. 251–256. https://doi.org/10.1109/DRPT.2000.855672.

  13. Kumar JS, Raja SC, Nesamalar JJD, Venkatesh P (2018) Optimizing renewable based generations in ac/dc microgrid system using hybrid nelder-mead-cuckoo search algorithm. Energy 158:204–215. https://doi.org/10.1016/j.energy.2018.06.029

    Article  Google Scholar 

  14. Lam AY, Li VO (2009) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 14(3):381–399. https://doi.org/10.1109/TEVC.2009.2033580

    Article  Google Scholar 

  15. Mahdad B (2019) Optimal reconfiguration and reactive power planning based fractal search algorithm: a case study of the algerian distribution electrical system. Eng Sci Technol Int J 22(1):78–101. https://doi.org/10.1016/j.jestch.2018.08.013

    Article  Google Scholar 

  16. Mukherjee V (2015) A novel quasi-oppositional harmony search algorithm and fuzzy logic controller for frequency stabilization of an isolated hybrid power system. Int J Electr Power Energy Syst 66:247–261. https://doi.org/10.1016/j.ijepes.2014.10.050

    Article  Google Scholar 

  17. Muthukumar K, Jayalalitha S (2017a) Integrated approach of network reconfiguration with distributed generation and shunt capacitors placement for power loss minimization in radial distribution networks. Appl Soft Comput 52:1262–1284. https://doi.org/10.1016/j.asoc.2016.07.031

    Article  Google Scholar 

  18. Muthukumar K, Jayalalitha S (2017b) Multiobjective hybrid evolutionary approach for optimal planning of shunt capacitors in radial distribution systems with load models. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2017.02.002

    Article  Google Scholar 

  19. Prakash D, Lakshminarayana C (2017) Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alex Eng J 56(4):499–509. https://doi.org/10.1016/j.aej.2016.10.002

    Article  Google Scholar 

  20. Rahnamayan S, Tizhoosh HR, Salama MM (2007) Opposition-based differential evolution (ODE) with variable jumping rate Opposition-based differential evolution (ode) with variable jumping rate. In: 2007 IEEE symposium on foundations of computational intelligence, pp 81–88. https://doi.org/10.1109/FOCI.2007.372151

  21. Ramadan H, Bendary A, Nagy S (2017) Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators. Int J Electr Power Energy Syst 84:143–152. https://doi.org/10.1016/j.ijepes.2016.04.041

    Article  Google Scholar 

  22. Ravindran S, Victoire TAA (2018) A bio-geography-based algorithm for optimal siting and sizing of distributed generators with an effective power factor model. Comput Electr Eng 72:482–501. https://doi.org/10.1016/j.compeleceng.2018.10.010

    Article  Google Scholar 

  23. Rezaei P, Vakilian M (2010) Distribution system efficiency improvement by reconfiguration and capacitor placement using a modified particle swarm optimization algorithm. In: 2010 IEEE Electrical Power and Energy Conference 2010 ieee electrical power and energy conference, pp 1–6. https://doi.org/10.1109/EPEC.2010.5697205.

  24. Roy PK, Bhui S (2013) Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem. Int J Electr Power Energy Syst 53:937–948. https://doi.org/10.1016/j.ijepes.2013.06.015

    Article  Google Scholar 

  25. Roy PK, Sur A, Pradhan DK (2013) Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Eng Appl Artif Intell 26(10):2516–2524. https://doi.org/10.1016/j.engappai.2013.08.002

    Article  Google Scholar 

  26. Shaw B, Mukherjee V, Ghoshal S (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Int J Electr Power Energy Syst 35(1):21–33. https://doi.org/10.1016/j.ijepes.2011.08.012

    Article  Google Scholar 

  27. Shefaei A, Vahid-Pakdel M, Mohammadi-Ivatloo B (2018) Application of a hybrid evolutionary algorithm on reactive power compensation problem of distribution network. Comput Electr Eng 72:125–136. https://doi.org/10.1016/j.compeleceng.2018.09.012

    Article  Google Scholar 

  28. Singh D, Misra RK (2012) Load type impact on distribution system reconfiguration. Int J Electr Power Energy Syst 42(1):583–592. https://doi.org/10.1016/j.ijepes.2012.04.032

    Article  Google Scholar 

  29. Sultana S, Roy PK (2016) Oppositional krill herd algorithm for optimal location of capacitor with reconfiguration in radial distribution system. Int J Electr Power Energy Syst 74:78–90. https://doi.org/10.1016/j.ijepes.2015.07.008

    Article  Google Scholar 

  30. Teng JH (2003) A direct approach for distribution system load flow solutions. IEEE Trans Powe Deliv 18(3):882–887. https://doi.org/10.1109/TPWRD.2003.813818

    Article  Google Scholar 

  31. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (cimca-iawtic’06) (Vol. 1, pp. 695–701). https://doi.org/10.1109/CIMCA.2005.1631345.

  32. Torres J, Guardado J, Rivas-Dávalos F, Maximov S, Melgoza E (2013) A genetic algorithm based on the edge window decoder technique to optimize power distribution systems reconfiguration. Int J Electr Power Energy Syst 45(10):28–34. https://doi.org/10.1016/j.ijepes.2012.08.075

    Article  Google Scholar 

  33. Tutueva AV, Nepomuceno EG, Karimov AI, Andreev VS, Butusov DN (2019) Adaptive chaotic maps and their application to pseudo-random numbers generation, vol 133. Chaos, Solitons Fractals, p X 100018

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Provas Kumar Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, P.K., Sultana, S. Optimal reconfiguration of capacitor based radial distribution system using chaotic quasi oppositional chemical reaction optimization. Microsyst Technol (2020). https://doi.org/10.1007/s00542-020-04885-8

Download citation