Skip to main content
Log in

Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A valveless micropump based on an electromagnetic actuation for drug delivery application has been designed. The parametric studies are performed to examine the effects of the divergence angle, neck width, diffuser length, height and diameter of the pump chamber and diaphragm thickness on the flow rate. Furthermore, an optimal design of the micropump is identified, and the proposed micropump has been fabricated. Experiments are performed to validate simulation results in terms of flow rate versus frequency and flow rate versus back pressure. The proposed micropump is polymer based and thus suitable for low-cost and disposable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Cui Q, Liu C, Zha XF (2008) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Adv Manuf Technol 36(5–6):516–524

    Article  Google Scholar 

  • Fadl A (2010) Valve-less rectification micropumps based on bifurcation structures

  • Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14(2):400

    Article  Google Scholar 

  • Gidde RR, Pawar PM (2017) On effect of viscoelastic characteristics of polymers on performance of micropump. Adv Mech Eng 9(2):1687814017691211

    Article  Google Scholar 

  • Gusenbauer M, Mazza G, Posnicek T, Brandl M, Schrefl T (2017) Magnetically actuated circular displacement micropump. Int J Adv Manul Technol 95:3575–3588

    Article  Google Scholar 

  • Jeong J, Kim CN (2007) A numerical simulation on diffuser-nozzle based piezoelectric micropumps with two different numerical models. Int J Numer Meth Fluids 53(4):561–571

    Article  MATH  Google Scholar 

  • Ke MT, Zhong JH, Lee CY (2012) Electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. Sensors 12(10):13075–13087

    Article  Google Scholar 

  • Kumar N, George D, Sajeesh P, Manivavannan PV, Sen AK (2016) Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements. J Micromech Microeng 26(7):5013

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35

    Article  Google Scholar 

  • Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech house

  • Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130(2):917–942

    Article  Google Scholar 

  • Pawar PM, Gidde RR, Ronge BP (2016) Shape optimization of microfluidic pump using fluid-structure interaction approach. In: Techno-Societal 2016, international conference on advanced technologies for societal applications. Springer, Cham, pp 471–477

  • Sen AK, Darabi J, Knapp DR (2007) Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications. Microfluid Nanofluid 3(3):283–298

    Article  Google Scholar 

  • Shen M, Yamahata C, Gijs MA (2008) Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator. Microelectron Eng 85(5–6):1104–1107

    Article  Google Scholar 

  • Singh S, Kumar N, George D, Sen AK (2015) Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens Actuators A 225:81–94

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A 39(2):159–167

    Article  Google Scholar 

  • Yamahata C, Lacharme F, Gijs MA (2005) Glass valveless micropump using electromagnetic actuation. Microelectron Eng 78:132–137

    Article  Google Scholar 

  • Yang KS, Chao TF, Chen IY, Wang CC, Shyu JC (2012) A comparative study of nozzle/diffuser micropumps with novel valves. Molecules 17(2):2178–2187

    Article  Google Scholar 

  • Yao Q, Xu D, Pan LS, Melissa Teo AL, Ho WM, Peter Lee VS, Shabbir M (2007) CFD simulations of flows in valveless micropumps. Eng Appl Comput Fluid Mech 1(3):181–188

    Google Scholar 

  • Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manuf Technol 30(3–4):215–220

    Article  Google Scholar 

  • Zhou Y, Amirouche F (2009) Study of fluid damping effects on resonant frequency of an electromagnetically actuated valveless micropump. Int J Adv Manuf Technol 45(11–12):1187

    Article  Google Scholar 

  • Zhou Y, Amirouche F (2011) An electromagnetically-actuated all-PDMS valveless micropump for drug delivery. Micromachines 2(3):345–355

    Article  Google Scholar 

  • Zhu M, Kirby P, Wacklerle M, Herz M, Richter M (2009) Optimization design of multi-material micropump using finite element method. Sens Actuators A 149(1):130–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjitsinha R. Gidde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidde, R.R., Pawar, P.M., Ronge, B.P. et al. Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application. Microsyst Technol 25, 509–519 (2019). https://doi.org/10.1007/s00542-018-3987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3987-y

Navigation