Skip to main content
Log in

Analysis of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor and modeling its fabrication imperfections

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Design and fabrication of an in-plane silicon Fabry–Perot temperature sensor for fiber-optic temperature sensing was reported in our previous work. To fabricate this sensor, deep reactive ion etching process was utilized which is challenging due to the large depth of etching needed for the device. Required optically smooth surfaces and highly vertical sidewalls as well as minimum amount of under-etch are difficult to be achieved in deep-etched structures. Here, the fabrication errors are briefly introduced and thereafter a numerical analysis based on the transfer-matrix formulation for propagation of Gaussian beams across the proposed silicon Fabry–Perot resonator is developed. Finally, the fabricated sensor is modeled and the device performance degradation due to fabrication imperfections is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addae-Mensah K, Retterer S, Opalenik S et al (2010) Cryogenic etching of silicon: an alternative method for fabrication of vertical microcantilever master molds. J Microelectromech Syst 19:64–74

    Article  Google Scholar 

  • Azimi S, Mehran M, Amini A et al (2010) Formation of three-dimensional and nanowall structures on silicon using a hydrogen-assisted high aspect ratio etching. J Vac Sci Technol B 28(6):1125–1131

    Article  Google Scholar 

  • Beheim G, Sotomayor J, Tuma M (1993) Laser-annealed thin-film fiber-optic temperature sensor. Proc SPIE 2045:217–221

    Article  Google Scholar 

  • Berthold JW, Reed SE, Sarkis RG (1991) Reflective fiber optic temperature sensor using silicon thin film. Opt Eng 30(5):524–528

    Article  Google Scholar 

  • Breglio G, Coppola G, Cutolo A et al (2001) Temperature optical sensor based on a silicon bi-modal Y branch. Proc SPIE 4293:155–161

    Article  Google Scholar 

  • Chang C, Solgaard O (2013) Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt Express 21(22):27209–27218

    Article  Google Scholar 

  • Cocorullo G, Della Corte F, Iodice M et al (1997) A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Trans Electron Devices 44(5):766–774

    Article  Google Scholar 

  • Deng Q, Li X, Chen R et al (2014) Low-cost silicon photonic temperature sensor using broadband light source. In: IEEE 11th international conference on group IV photonics (GFP). https://doi.org/10.1109/Group4.2014.6962033

  • Gharooni M, Mohajerzadeh A, Sandoughsaz A et al (2013) A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon. J Micromech Microeng 23(9):095014

    Article  Google Scholar 

  • Guan X, Wang X, Frandsen L (2016) Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt Express 24(15):16349–16356

    Article  Google Scholar 

  • Irace A, Breglio G (2003) All-silicon optical temperature sensor based on multi-mode interference. Opt Express 11(22):2807–2812

    Article  Google Scholar 

  • Jung I, Park B, Provine J et al (2009) Photonic crystal fiber tip sensor for precision temperature sensing. In: IEEE LEOS annual meeting conference.  https://doi.org/10.1109/LEOS.2009.5343346

  • Jung I, Park B, Provine J et al (2011) Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J Lightwave Technol 29(9):1367–1374

    Article  Google Scholar 

  • Kim H, Yu M (2016) Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt Express 24(9):9501–9510

    Article  Google Scholar 

  • Kim G, Lee H, Park C et al (2010) Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt Express 18(21):22215–22221

    Article  Google Scholar 

  • Klimov N, Berger M, Ahmed Z (2015a) Towards reproducible ring resonator based temperature sensors. Sens Transducers J 191(8):63–66

    Google Scholar 

  • Klimov N, Mittal S, Berger M et al (2015b) On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt Lett 40(17):3934–3936

    Article  Google Scholar 

  • Klimov N, Purdy T, Ahmed Z (2015) Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity. Adv Photonics. https://doi.org/10.1364/SENSORS.2015.SeT4C.4

    Google Scholar 

  • Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent 26(3):5501893

  • Lee H, Kim G, Kim W et al (2011) Tunable-Resonator-Based Temperature Sensor Interrogated through Optical Power Detection. Appl Phys Express 4(10):102201

    Article  Google Scholar 

  • Lipson A, Yeatman EM (2007a) A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst 16(3):521–527

    Article  Google Scholar 

  • Lipson A, Yeatman EM (2007b) Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt Lett 31(3):395–397

    Article  Google Scholar 

  • Liu G, Han M, Hou W (2015) High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry–Perot cavity. Opt Express 23(6):7237–7247

    Article  Google Scholar 

  • Park B, Jung I, Provine J et al (2010) Monolithic silicon photonic crystal fiber tip sensor for refractive index and temperature sensing. In: IEEE conference on lasers and electro-optics and quantum electronics and laser science. https://doi.org/10.1364/CLEO.2010.CThB1

  • Park B, Provine J, Jung I et al (2011) Photonic crystal fiber tip sensor for high-temperature measurement. IEEE Sens J 11(11):2643–2648

    Article  Google Scholar 

  • Park B, Jung IW, Provine J et al (2014) Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26(9):900–903

    Article  Google Scholar 

  • Qiu C, Hu T, Yu P et al (2012) A temperature sensor based on silicon eye-like microring with sharp asymmetric fano resonance. In: IEEE 9th international conference on group IV photonics (GFP). https://doi.org/10.1109/GROUP4.2012.6324107

  • Sammak A, Azimi S, Izadi N et al (2007) Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching. J Microelectromech Syst 16(4):912–918

    Article  Google Scholar 

  • Schultheis L, Amstutz H, Kaufmann M (1988) Fiber-optic temperature sensing with ultrathin silicon etalons. Opt Lett 13(9):782–784

    Article  Google Scholar 

  • St-Gelais R, Poulin A, Peter Y (2012) Advances in modeling, design, and fabrication of deep-etched multilayer resonators. J Lightwave Technol 30(12):1900–1908

    Article  Google Scholar 

  • Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616

    Article  Google Scholar 

  • Tao J, Cai H, Gu Y et al (2015) Demonstration of a photonic-based linear temperature sensor. IEEE Photon Technol Lett 27(7):767–769

    Article  Google Scholar 

  • Xu H, Hafezi M, Fan J et al (2014) Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express 22(3):3098–3104

    Article  Google Scholar 

  • Zarei S, Mohajerzadeh S (2017) Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett 13:421–426

    Article  Google Scholar 

  • Zarei S, Mohajerzadeh S, Shahabadi M (2017) Design and fabrication of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor. In: IEEE international conference on telecommunications and photonics (ICTP). https://doi.org/10.1109/ICTP.2017.8285921

Download references

Acknowledgements

The authors would like to thank Mr. Amideddin Mataji-Kojouri from the Photonics Research Lab., School of ECE, University of Tehran, for supplying the TLM Matlab code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaz Zarei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, S., Shahabadi, M. & Mohajerzadeh, S. Analysis of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor and modeling its fabrication imperfections. Microsyst Technol 25, 389–397 (2019). https://doi.org/10.1007/s00542-018-3978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3978-z

Navigation