Skip to main content
Log in

Thermo-mechanical wave dispersion analysis of nonlocal strain gradient single-layered graphene sheet rested on elastic medium

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Present research is mainly devoted to show the effects of temperature change on the mechanical properties of in-plane waves propagating in a single-layered graphene sheet. Graphene sheet is assumed to be rested on an elastic medium. Influences of elastic substrate on the behavior of graphene sheet is modeled by the means of a two parameter elastic foundation. In addition, a trigonometric refined plate theory is applied to derive the kinematic relations. Also, a nonlocal strain gradient theory is utilized to show the size-dependency of graphene sheet. In the framework of Hamilton’s principle, the nonlocal governing differential equations are derived. Moreover, an analytical approach is applied to find the unknowns of the final eigen value equation. At the end of the paper, it is tried to clarify the influences of each parameter by the means of some diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arani AG, Haghparast E, Zarei HB (2016) Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Phys B 495:35–49

    Article  Google Scholar 

  • Arash B, Wang Q, Liew KM (2012) Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput Methods Appl Mech Eng 223:1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41(9):1651–1655

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016a) A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arab J Sci Eng 41(5):1679–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi F, Barati MR (2016b) Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in hygrothermal environment. Mech Adv Mater Struct 25:361–374 (just-accepted)

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016c) Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur Phys J Plus 131(8):279

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016d) A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Appl Phys A 122(9):792

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016e) Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory. Smart Mater Struct 25(10):105014

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016f) Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory. Acta Mech Solida Sin 29(5):547–554

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016g) Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams. Eur Phys J Plus 131(9):346

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2017a) Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects. Appl Phys A 123(1):5

    Article  MATH  Google Scholar 

  • Ebrahimi F, Barati MR (2017b) Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos Struct 159:433–444

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2017c) Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J Mech 33(1):23–33

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A (2017a) Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams. Eur Phys J Plus 132:1–15

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A (2017b) On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos Struct 162:281–293

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A (2017c) Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater Res Express 4(2):025003

    Article  Google Scholar 

  • Ebrahimi F, Hosseini SHS (2016) Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stress 39(5):606–625

    Article  Google Scholar 

  • Ebrahimi F, Salari E (2015) Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory. J Mech Sci Technol 29(9):3797–3803

    Article  Google Scholar 

  • Ebrahimi F, Shafiei N (2017) Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Mech Adv Mater Struct 24(9):761–772

    Article  Google Scholar 

  • Ebrahimi F, Ghasemi F, Salari E (2016a) Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1):223–249

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi F, Barati MR, Haghi P (2016b) Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams. Eur Phys J Plus 131(11):383

    Article  Google Scholar 

  • Ebrahimi F, Barati MR, Dabbagh A (2016c) Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl Phys A 122(11):949

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A, Barati MR (2016d) Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate. Eur Phys J Plus 131(12):433

    Article  Google Scholar 

  • Ebrahimi F, Barati MR, Dabbagh A (2016e) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182

    Article  MATH  Google Scholar 

  • Ebrahimi F, Barati MR, Haghi P (2017) Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams. J Therm Stress 40(5):535–547

    Article  Google Scholar 

  • Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl Math Model 37(7):4787–4797

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Farajpour A, Yazdi MH, Rastgoo A, Mohammadi M (2016) A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech 227(7):1849–1867

    Article  MathSciNet  MATH  Google Scholar 

  • Ghadiri M, Shafiei N (2016) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol 22(12):2853–2867

    Article  Google Scholar 

  • Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  • Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94

    Article  MathSciNet  MATH  Google Scholar 

  • Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  • Malekzadeh P, Setoodeh AR, Beni AA (2011) Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos Struct 93(7):1631–1639

    Article  Google Scholar 

  • Murmu T, Pradhan SC (2009) Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J Appl Phys 105(6):064319

    Article  Google Scholar 

  • Murmu T, McCarthy MA, Adhikari S (2013) In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos Struct 96:57–63

    Article  Google Scholar 

  • Narendar S, Gopalakrishnan S (2012a) Temperature effects on wave propagation in nanoplates. Compos B Eng 43(3):1275–1281

    Article  MATH  Google Scholar 

  • Narendar S, Gopalakrishnan S (2012b) Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects. Int J Mech Sci 64(1):221–231

    Article  Google Scholar 

  • Natarajan S, Chakraborty S, Thangavel M, Bordas S, Rabczuk T (2012) Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput Mater Sci 65:74–80

    Article  Google Scholar 

  • Pradhan SC, Kumar A (2011) Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos Struct 93(2):774–779

    Article  Google Scholar 

  • Pradhan SC, Murmu T (2010) Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Phys E 42(5):1293–1301

    Article  Google Scholar 

  • Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Phys E 44(4):764–772

    Article  Google Scholar 

  • Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Mingo N (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216

    Article  Google Scholar 

  • Wang YZ, Li FM, Kishimoto K (2010) Scale effects on the longitudinal wave propagation in nanoplates. Phys E 42(5):1356–1360

    Article  Google Scholar 

  • Xiao W, Li L, Wang M (2017) Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory. Appl Phys A 123(6):388

    Article  Google Scholar 

  • Zenkour AM (2016) Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Phys E 79:87–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Eq. (31) \( k_{ij} \) and \( m_{ij} \), \( (i,j = 1,2) \) are defined as follows:

$$ \left\{ \begin{aligned} k_{11} = & - \,(1 + \eta^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(D_{11} \beta_{1}^{4} + 2(D_{12} + 2D_{66} )\beta_{1}^{2} \beta_{2}^{2} + D_{22} \beta_{2}^{4} ) \\ & + \,(1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))((N^{T} - k_{p} )(\beta_{1}^{2} + \beta_{2}^{2} ) - k_{w} ) \\ k_{12} = & - \,(1 + \eta^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(D_{11}^{s} \beta_{1}^{4} + 2(D_{12}^{s} + 2D_{66}^{s} )\beta_{1}^{2} \beta_{2}^{2} + D_{22}^{s} \beta_{2}^{4} ) \\ & + \,(1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))((N^{T} - k_{p} )(\beta_{1}^{2} + \beta_{2}^{2} ) - k_{w} ) \\ k_{21} = & - \,(1 + \eta^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(D_{11}^{s} \beta_{1}^{4} + 2(D_{12}^{s} + 2D_{66}^{s} )\beta_{1}^{2} \beta_{2}^{2} + D_{22}^{s} \beta_{2}^{4} ) \\ & + \,(1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))((N^{T} - k_{p} )(\beta_{1}^{2} + \beta_{2}^{2} ) - k_{w} ) \\ k_{22} = & - \,(1 + \eta^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))\left( \begin{aligned} H_{11}^{s} \beta_{1}^{4} + 2(H_{12}^{s} + 2H_{66}^{s} )\beta_{1}^{2} \beta_{2}^{2} + H_{22}^{s} \beta_{2}^{4} \\ + A_{55}^{s} \beta_{1}^{2} + A_{44}^{s} \beta_{2}^{2} \\ \end{aligned} \right) \\ & + \,(1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))((N^{T} - k_{p} )(\beta_{1}^{2} + \beta_{2}^{2} ) - k_{w} ) \\ \end{aligned} \right. $$
(36)
$$ \left\{ \begin{aligned} & m_{11} = - (1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(I_{0} + I_{2} (\beta_{1}^{2} + \beta_{2}^{2} )) \\ & m_{12} = - (1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(I_{0} + J_{2} (\beta_{1}^{2} + \beta_{2}^{2} )) \\ & m_{21} = - (1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(I_{0} + J_{2} (\beta_{1}^{2} + \beta_{2}^{2} )) \\ & m_{22} = - (1 + \mu^{2} (\beta_{1}^{2} + \beta_{2}^{2} ))(I_{0} + K_{2} (\beta_{1}^{2} + \beta_{2}^{2} )) \\ \end{aligned} \right.. $$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Dabbagh, A. Thermo-mechanical wave dispersion analysis of nonlocal strain gradient single-layered graphene sheet rested on elastic medium. Microsyst Technol 25, 587–597 (2019). https://doi.org/10.1007/s00542-018-3972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3972-5

Navigation