Skip to main content
Log in

Effect of gravity on piezo-thermoelasticity within the dual-phase-lag model

  • Review Article
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The equations of generalized piezo-thermoelasticity within the frame of dual-phase-lag model are used to study the effect of gravitational force on the behavior of a half-space. Analytic expressions for the displacement components, temperature, stress and strain tensors components are obtained using normal mode analysis. Numerical results for the field quantities of practical interest are given in the physical domain and illustrated graphically. Comparison is made between the results predicted by Lord–Shulman theory and dual-phase-lag (DPL) model. The results obtained by applying both of the L–S theory and DPL model are shown to be very close to each other except in determining one of the components of the electric displacement where the results differ and in general the effect of the presence of gravity is to weaken the absolute values of the physical quantities except in the case of the same component of the electric displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(u_{i}\) :

The mechanical displacement

\(\varphi\) :

Electric potential

T :

Absolute temperature

\(\varepsilon _{ij}\) :

Strain tensor

\(\sigma _{ij}\) :

Stress tensor

\(\beta _{ij}\) :

Thermoelastic tensor

\(E_{i}\) :

Electric field

\(D_{i}\) :

Electric displacement

\(C_{ijkl}\) :

Elastic stiffness tensor

\(e_{ijk}\) :

Piezoelectric tensor

\(\in _{ij}\) :

The dielectric moduli

\(p_{i}\) :

Pyroelectric moduli

\(\tau _{\theta }\) :

Phase lag of temperature gradient

\(\tau _{q}\) :

Phase lag of the heat flux

\(K_{ij}\) :

Heat conduction tensor

\(T_{0}\) :

Reference temperature

\(C_{T}\) :

Specific heat at constant strain

\(\rho\) :

Mass density

\(\alpha _{1} ,\alpha _{3}\) :

Coefficients of linear thermal expansion

\(v_{p}=\sqrt{\frac{1}{\rho }C_{11}}\) :

Longitudinal wave velocity

References

  • Abbas IA, Zenkour AM (2014) Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating. J Computational Theor Nanosci 11(3):642–645

    Article  Google Scholar 

  • Abou-Dina MS, Dhaba EL, Ghaleb AR, Rawy AF (2017) EK A model of nonlinear thermo-electroelasticity in extended thermo-electroelasticity in extended thermoelasticity. Int J Eng Sci 119:29–39

    Article  MATH  Google Scholar 

  • Ailawalia P, Narah NS (2009) Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid. Appl Math Mech 30:1505–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Aouadi M (2006) Generalized thermo-piezoelectric problems with temperature-dependent properties. Int J Sol Str 43:6347–6358

    Article  MATH  Google Scholar 

  • Ghaleb AF (2014) Coupled thermoelectroelasticity in extended thermodynamics. In: Hetnarski RB (ed) Encyclopedia of thermal stresses (C). Springer, Netherlands, pp 767–774

    Chapter  Google Scholar 

  • Lu X, Hanagud S (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrasonics Ferroelectr Freq Control 51(12):1582–1592

    Article  Google Scholar 

  • Mindlin RD (1974) Equations of high frequency vibrations of thermo-piezo-electric plate. Int J Sol Str 10:625–637

    Article  MATH  Google Scholar 

  • Othman MIA, Abd-Elaziz EM (2015) The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual phase lag model. J Therm Stresses 38(9):1068–1082

    Article  Google Scholar 

  • Othman MIA, Ahmed EAA (2016) The effect of gravity field on piezo-thermo- elastic medium with three theories. J Therm Stresses 39(4):474–486

    Article  Google Scholar 

  • Othman MIA, Elmaklizi YD, Ahmed EAA (2017) Influence of magnetic field on generalized piezo-thermoelastic rotating medium with two relaxation times. Microsyst Technol 23(12):5599–5612

    Article  Google Scholar 

  • Othman MIA, Hasona WM, Eraki EEM (2014) Effect of rotation on micro-polar generalized thermoelasticity with two-temperatures using a dual-phase-lag model. Can J Phy 92(2):149–158

    Article  Google Scholar 

  • Sharma JN, Kumar M (2000) Plane harmonic waves in piezo-thermoelastic materials. Indian J Eng Mater Sci 7:434–442

    Google Scholar 

  • Sharma JN, Pal M, Chand D (2005) Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. JSV 284:227–248

    Article  Google Scholar 

  • Sharma MD (2010) Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mech 215:307–318

    Article  MATH  Google Scholar 

  • Tzou DY (1995) A unified field approach for heat conduction from macro-to micro-scales. J Heat Transfer 117(1):8–16

    Article  Google Scholar 

  • Tzou DY (1995) Experimental support for the lagging behavior in heat propagation. J Thermophys Heat Transfer 9(4):686–693

    Article  Google Scholar 

  • Tzou DY (1996) Macro- to microscale heat transfer: the lagging behavior, 1st edn. Taylor and Francis, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethar A. A. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} \delta _{1}&=\frac{C_{11}}{\rho v_{p}^{2}},&\delta _{2}&=\frac{C_{44}}{ \rho v_{p}^{2}},&\delta _{3}&=\frac{(C_{13}+C_{44})}{\rho v_{p}^{2}},&\delta _{4}&=\frac{(e_{31}+e_{15})}{e_{33}},&\delta _{5}&=\frac{C_{33}}{ \rho v_{p}^{2}}, \\ \delta _{6}&=\frac{e_{15}}{e_{33}},&\delta _{7}&=-\frac{\beta _{3}}{\beta _{1}},&\delta _{8}&=\frac{ (e_{15}+e_{31})}{\rho v_{p}^{2}},&\delta _{9}&=\frac{e_{15}}{\rho v_{p}^{2}},&\delta _{10}&=\frac{e_{33}}{\rho v_{p}^{2}},\\ \delta _{11}&=-\frac{\epsilon _{11}}{e_{33}},&\delta _{12}&=-\frac{\epsilon _{33}}{e_{33}},&\delta _{13}&= \frac{P_{3}}{\beta _{1}},&\delta _{14}&=\frac{K_{1}\omega ^{*}}{\rho C_{T}v_{p}^{2}},&\delta _{15}&=\frac{ K_{3}\omega ^{*}}{\rho C_{T}v_{p}^{2}}, \\ \delta _{16}&=\frac{\beta _{1}^{2}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}},&\delta _{17}&=\frac{\beta _{1}\beta _{3}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}},&\delta _{18}&=-\frac{ P_{3}\beta _{1}T_{0}}{\rho C_{T}e_{33}}.&&\end{aligned}$$

and

$$\begin{aligned}&A_{1}=\frac{a^{2}c^{2}-a^{2}\delta _{1}}{\delta _{2}},&A_{2}=\frac{ia\delta _{3}}{\delta _{2}},&A_{3}= \frac{iag}{\delta _{2}},&A_{4}=\frac{ia\delta _{4}}{\delta _{2} }, \\&A_{5}=\frac{-ia}{\delta _{2}},&A_{6}=\frac{ ia\delta _{3}}{\delta _{5}},&A_{7}=\frac{-iag}{\delta _{5}},&A_{8}=\frac{a^{2}c^{2}-a^{2}\delta _{2}}{\delta _{5}}, \\&A_{9}=\frac{1}{\delta _{5}},&A_{10}=-\frac{ a^{2}\delta _{6}}{\delta _{5}},&A_{11}=\frac{\delta _{7}}{ \delta _{5}},&A_{12}=\frac{ia\delta _{8}}{\delta _{10}}, \\&A_{13}=-\frac{a^{2}\delta _{9}}{\delta _{10}},&A_{14}=\frac{\delta _{12}}{\delta _{10}},&A_{15}=-\frac{ a^{2}\delta _{11}}{\delta _{10}},&A_{16}=\frac{\delta _{13}}{ \delta _{10}}, \\&A_{17}=-\frac{a^{2}c\delta _{16}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })},&A_{18}=\frac{iac\delta _{17}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })},&A_{19}=\frac{iac\delta _{18}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })},&\\ \end{aligned}$$
$$\begin{aligned} A_{20}=\frac{-a^{2}\delta _{14}(1-iac\tau _{\theta })+iac(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })} \end{aligned}$$
$$\begin{aligned}A&=\frac{-1}{(A_{14}-A_{9})}\left(A_{14}A_{20}+A_{15}-A_{16}A_{19}+A_{8}A_{14}-A_{9}A_{20}\right.\\ &\left.-A_{9}A_{13} +A_{9}A_{16}A_{18}-A_{10}+A_{11}A_{19}\right.\\ &\left.-A_{11}A_{14}A_{18}+A_{1}A_{14}-A_{1}A_{9} -A_{2}A_{6}A_{14}+A_{2}A_{9}A_{12}+A_{4}A_{6}-A_{4}A_{12}\right) ,\end{aligned}$$
$$\begin{aligned} B&=\frac{1}{(A_{14}-A_{9})}(A_{5}A_{20}+A_{8}A_{14}A_{20}+A_{8}A_{15}-A_{8}A_{16}A_{19}-A_{9}A_{13}A_{20}-A_{10}A_{13}\\&\quad+A_{10}A_{20}+A_{10}A_{16}A_{18}+A_{11}A_{13}A_{19}-A_{11}A_{15}A_{18}+A_{1}A_{14}A_{20}+A_{1}A_{15}\\&\quad-A_{1}A_{16}A_{19}+A_{1}A_{8}A_{14}\\&\quad-A_{1}A_{9}A_{13}-A_{1}A_{9}A_{20}+A_{1}A_{9}A_{16}A_{18}-A_{1}A_{10}+A_{1}A_{11}A_{19}-A_{1}A_{11}A_{14}A_{18}\\&\quad-A_{2}A_{6}A_{14}A_{20}\\&\quad-A_{2}A_{6}A_{15}+A_{2}A_{6}A_{16}A_{19}+A_{2}A_{9}A_{12}A_{20}-A_{2}A_{9}A_{16}A_{17}+A_{2}A_{10}A_{12}\\&\quad-A_{2}A_{11}A_{12}A_{19}+A_{2}A_{11}A_{14}A_{17}-A_{3}A_{7}A_{14}\\&\quad+A_{4}A_{6}A_{13}+A_{4}A_{6}A_{20}-A_{4}A_{6}A_{16}A_{18}-A_{4}A_{12}A_{20}\\&\quad+A_{4}A_{16}A_{17}-A_{4}A_{8}A_{12}+A_{4}A_{11}A_{12}A_{18}-A_{4}A_{11}A_{17}\\&\quad+A_{5}A_{6}A_{19}+A_{5}A_{6}A_{14}A_{18}+A_{5}A_{12}A_{19}\\&\quad-A_{5}A_{14}A_{17}-A_{5}A_{9}A_{12}A_{18}+A_{5}A_{9}A_{17}), \end{aligned}$$
$$\begin{aligned} C&=\frac{-1}{(A_{14}-A_{9})}(A_{8}A_{15}A_{20}-A_{10}A_{13}A_{20}+A_{1}A_{15}A_{20}+A_{1}A_{8}A_{14}A_{20}+A_{1}A_{8}A_{15}\\&\quad-A_{1}A_{8}A_{16}A_{19}-A_{1}A_{9}A_{13}A_{20}-A_{1}A_{10}A_{13}-A_{1}A_{10}A_{20}+A_{1}A_{10}A_{16}A_{18}\\&\quad+A_{1}A_{11}A_{13}A_{19}-A_{1}A_{11}A_{15}A_{18}-A_{2}A_{6}A_{15}A_{20}\\&\quad+A_{2}A_{10}A_{12}A_{20}-A_{2}A_{10}A_{16}A_{17}+A_{2}A_{11}A_{15}A_{17}-A_{3}A_{7}A_{14}A_{20}\\&\quad-A_{3}A_{7}A_{15}+A_{3}A_{7}A_{16}A_{19}+A_{4}A_{6}A_{13}A_{20}-A_{4}A_{8}A_{12}A_{20}\\&\quad+A_{4}A_{8}A_{16}A_{17}-A_{4}A_{11}A_{13}A_{17}-A_{5}A_{6}A_{13}A_{19}+A_{5}A_{6}A_{15}A_{18}\\&\quad-A_{5}A_{15}A_{17}+A_{5}A_{8}A_{12}A_{19}-A_{5}A_{8}A_{14}A_{17}+A_{5}A_{9}A_{13}A_{17}\\&\quad-A_{5}A_{10}A_{12}A_{18}+A_{5}A_{10}A_{17}), \end{aligned}$$
$$\begin{aligned} E&=\frac{1}{(A_{14}-A_{9})}(A_{1}A_{8}A_{15}A_{20}-A_{1}A_{10}A_{13}A_{20}-A_{3}A_{7}A_{15}A_{20}\\&\quad-A_{5}A_{8}A_{15}A_{17}+A_{5}A_{10}A_{13}A_{17}). \end{aligned}$$

1.1 Appendix B

$$\begin{aligned}&H_{1n}=-\frac{s_{1n}}{s_{2n}}, H_{2n}=-\frac{q_{1n}+q_{2n}H_{1n}}{q_{3n}},&H_{3n}=-\frac{(k_{n}^{2}+A_{1})+(-A_{2}k_{n}+A_{3})H_{1n}-A_{4}k_{n}H_{2n}}{ A_{5}},\\&H_{4n}=[r_{1}-l_{1}k_{n}H_{1n}-l_{2}k_{n}H_{2n}-H_{3n}],&H_{5n}=[r_{2}-\delta _{5}k_{n}H_{1n}-k_{n}H_{2n}+\delta _{7}H_{3n}],\\&H_{6n}=[-\delta _{2}k_{n}+r_{3}H_{1n}+r_{4}H_{2n}],&H_{7n}=[-l_{3}k_{n}+r_{5}H_{1n}+r_{6}H_{2n}],\\&H_{8n}=[r_{7}-l_{6}k_{n}H_{1n}-l_{7}k_{n}H_{2n}+l_{8}H_{3n}].&n=1,2,3,4.\\&q_{1n}=A_{11}k_{n}^{3}+(A_{1}A_{11}-A_{5}A_{6})k_{n}+A_{5}A_{7},&\\&q_{2n}=(-A_{2}A_{11}+A_{5})k_{n}^{2}+A_{3}A_{11}k_{n}+A_{5}A_{8},&\\&q_{3n}=(-A_{4}A_{11}+A_{5}A_{9})k_{n}^{2}+A_{5}A_{10},&q_{4n}=A_{16}k_{n}^{3}+(A_{1}A_{16}-A_{5}A_{12})k_{n},\\&q_{5n}=(A_{5}-A_{2}A_{16})k_{n}^{2}+A_{3}A_{16}k_{n}+A_{5}A_{13},&q_{6n}=(A_{5}A_{14}-A_{4}A_{16})k_{n}^{2}+A_{5}A_{15}.\\&s_{1n}=q_{1n}q_{6n}-q_{3n}q_{4n},&s_{2n}=q_{2n}q_{6n}-q_{3n}q_{5n}. \end{aligned}$$
$$\begin{aligned} l_{1}=\frac{C_{13}}{\rho v_{p}^{2}},\quad l_{2}=\frac{e_{31}}{e_{33}},\quad l_{3}=\frac{e_{15}\beta _{1}T_{0}}{e\rho v_{p}^{2}},\quad l_{4}=-\frac{\epsilon _{11}\beta _{1}T_{0}}{ee_{33}}, \end{aligned}$$
$$\begin{aligned} l_{5}=\frac{e_{31}\beta _{1}T_{0}}{e\rho v_{p}^{2}},\quad l_{6}=\frac{e_{33}\beta _{1}T_{0}}{e\rho v_{p}^{2}},\quad l_{7}=-\frac{\epsilon _{33}\beta _{1}T_{0}}{ee_{33}},\quad l_{8}=\frac{P_{3}T_{0}}{e}. \end{aligned}$$
$$\begin{aligned} \{r_{1},r_{2},r_{3},r_{4},r_{5},r_{6},r_{7}\}=ia\{\delta _{1},l_{1},\delta _{2},\delta _{6},l_{3},l_{4},l_{5}\} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.A.A., Abou-Dina, M.S. & El Dhaba, A.R. Effect of gravity on piezo-thermoelasticity within the dual-phase-lag model. Microsyst Technol 25, 1–10 (2019). https://doi.org/10.1007/s00542-018-3959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3959-2

Keywords

Navigation