Skip to main content

Advertisement

Log in

Fabrication of a light-intensity-enhancement component by using computer-controlled ultraviolet curing and air-pressing imprinting

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this study, the ultraviolet (UV) curing and air pressure imprinting methods are proposed for the fabrication of a light-intensity-enhancement component. The air-pressing process provides a uniform embossing pressure, and the UV curing module enables the process to be performed at room temperature and low pressure. Because the UV resin is sensitive to the process parameters, such as the curing time and pressing pressure, the liquid resin must be filled at a precise pressure. To control the precision, the UV embossing facility comprised a resin-dispensing system, air-pressing system, and UV curing system. These systems were controlled by the Arduino system. In the Arduino system, the computer-controlled input can eliminate artificial errors and each forming step can be programed into one script to achieve automation. In this study, V-groove microstructures were formed. The V-groove pattern was replicated with a width of 47 μm and height of 22 μm on polymethyl methacrylate substrate for use as a light guiding panel. The proposed methodology enables automatic control of the UV microscale imprinting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-Yeu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, NW., Ke, KC. & Yang, SY. Fabrication of a light-intensity-enhancement component by using computer-controlled ultraviolet curing and air-pressing imprinting. Microsyst Technol 25, 31–37 (2019). https://doi.org/10.1007/s00542-018-3927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3927-x

Navigation