Inkjet-printed proximity sensor for human–robot interaction

  • Tao Li
  • Sheng Zhang
Technical Paper


With the rapid development of artificial intelligence (AI), the human–robot interaction (HRI) has been attracted considerable attention in recent years. The essential component for high-efficient and high-precision HRI is the sensors that help the humanoid robot to identify and recognize the behaviors of human beings. Traditional sensors such as lidar, sonar, and inertial sensors, are commonly used for the object detection in unseparated environments, very few studies have explored in separate conditions, and therefore, few proximity sensors have been applied on the HRI. Inkjet printing as an emerging technology has wide applications in modern industrial and scientific research field. In this paper, the inkjet-printed proximity sensor is proposed for the HRI. The experimental results show that the proposed sensor has the outstanding performance for the human perception and human tracking.


Proximity sensor Inkjet-printed Human–robot interaction Separate environment Perception 



  1. Alshammari AS, Alenezi MR, Lai K, Silva S (2017) Inkjet printing of polymer functionalized cnt gas sensor with enhanced sensing properties. Mater Lett 189:299CrossRefGoogle Scholar
  2. Angmo D, Larsen-Olsen TT, Jørgensen M, Søndergaard RR, Krebs FC (2013) Roll-to-roll inkjet printing and photonic sintering of electrodes for ito free polymer solar cell modules and facile product integration. Adv Energy Mater 3(2):172CrossRefGoogle Scholar
  3. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ (2014) Inkjet printing for pharmaceutical applications. Mater Today 17(5):247CrossRefGoogle Scholar
  4. Chandra M, Ke SY, Chen R, Lo CY (2017) Vertically stacked capacitive tactile sensor with more than quadrupled spatial resolution enhancement from planar arrangement. Sens Actuators A Phys 263:386CrossRefGoogle Scholar
  5. Chuang C, Weng H, Cheng J, Shaikh M (2017) Solid-state sensors, actuators and microsystems (TRANSDUCERS). In: 2017 19th international conference on IEEE, pp. 512–515Google Scholar
  6. Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensingfrom humans to humanoids. IEEE Trans Robot 26(1):1CrossRefGoogle Scholar
  7. Daly R, Harrington TS, Martin GD, Hutchings IM (2015) Inkjet printing for pharmaceutics-a review of research and manufacturing. Int J Pharm 494(2):554CrossRefGoogle Scholar
  8. Damilano A, Ros PM, Sanginario A, Chiolerio A, Bocchini S, Roppolo I, Pirri CF, Carrara S, Demarchi D, Crepaldi M (2017) A robust capacitive digital read-out circuit for a scalable tactile skin. IEEE Sens J 17(9):2682CrossRefGoogle Scholar
  9. Eom SH, Park H, Mujawar S, Yoon SC, Kim SS, Na SI, Kang SJ, Khim D, Kim DY, Lee SH (2010) High efficiency polymer solar cells via sequential inkjet-printing of pedot: Pss and p3ht: Pcbm inks with additives. Org Electron 11(9):1516CrossRefGoogle Scholar
  10. Eshkalak SK, Chinnappan A, Jayathilaka W, Khatibzadeh M, Kowsari E, Ramakrishna S (2017) A review on inkjet printing of cnt composites for smart applications. Appl Mater Today 9:372CrossRefGoogle Scholar
  11. Fu YM, Chou MC, Cheng YT, Secor EB, Hersam MC (2017) Micro electro mechanical systems (MEMS). In: 2017 IEEE 30th international conference on IEEE, pp. 612–615Google Scholar
  12. Gupta S, Giacomozzi F, Heidari H, Lorenzelli L, Dahiya R (2016) Ultra-thin silicon based piezoelectric capacitive tactile sensor. Procedia Eng 168:662CrossRefGoogle Scholar
  13. Hassan A, Lee K, Bae J, Lee CH (2017) An inkjet-printed microstrip patch sensor for liquid identification. Sens Actuators A Phys 268:141CrossRefGoogle Scholar
  14. He M, Liu R, Li Y, Wang H, Lu X, Ding G, Wu J, Zhang T, Zhao X (2013) Tactile probing system based on micro-fabricated capacitive sensor. Sens Actuators A Phys 194:128CrossRefGoogle Scholar
  15. Jović M, Hidalgo-Acosta JC, Lesch A, Bassetto VC, Smirnov E, Cortés-Salazar F, Girault HH (2017) Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based ph sensors. J Electroanal Chem.
  16. Lee HK, Chang SI, Yoon E (2009) Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens J 9(12):1748CrossRefGoogle Scholar
  17. Moya A, Gabriel G, Villa R, del Campo FJ (2017) Inkjet-printed electrochemical sensors. Curr Opin ElectrochemGoogle Scholar
  18. Paulino T, Ribeiro P, Neto M, Cardoso S, Schmitz A, Santos-Victor J, Bernardino A, Jamone L (2017) Robotics and automation (ICRA). In: 2017 IEEE international conference on IEEE, pp. 966–971Google Scholar
  19. Piacenza P, Dang W, Hannigan E, Espinal J, Hussein I, Kymissis I, Ciocarlie M (2017) In: IEEE international conference on robotics and automationGoogle Scholar
  20. Qiu S, Huang Y, He X, Sun Z, Liu P, Liu C (2015) A dual-mode proximity sensor with integrated capacitive and temperature sensing units. Meas Sci Technol 26(10):105101CrossRefGoogle Scholar
  21. Safaryan SM, Yakovlev AV, Vinogradov AV, Vinogradov VV (2017) Inkjet printing of the chromogen free oxidase based optical biosensors. Chem Sens Actuators B 251:746–752.
  22. Salim A, Lim S (2017) Review of recent inkjet-printed capacitive tactile sensors. Sensors 17(11):2593CrossRefGoogle Scholar
  23. Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans Robot 27(3):389CrossRefGoogle Scholar
  24. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printingprocess and its applications. Adv Mater 22(6):673CrossRefGoogle Scholar
  25. Wei Z, Chen H, Yan K, Yang S (2014) Inkjet printing and instant chemical transformation of a ch3nh3pbi3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem 126(48):13455CrossRefGoogle Scholar
  26. Xia F, Bahreyni B, Campi F (2016) In: SENSORS, 2016 IEEE, (IEEE, 2016), pp. 1–3Google Scholar
  27. Zheng Q, Lu J, Chen H, Huang L, Cai J, Xu Z (2011) Application of inkjet printing technique for biological material delivery and antimicrobial assays. Anal Biochem 410(2):171CrossRefGoogle Scholar
  28. Ziraknejad N, Lawrence PD, Romilly DP (2015) Vehicle occupant head position quantification using an array of capacitive proximity sensors. IEEE Trans Vehicular Technol 64(6):2274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Innovative Science and TechnologyTokai UniversityHiratsukaJapan
  2. 2.Micro/Nano Technology CenterTokai UniversityHiratsukaJapan

Personalised recommendations