Advertisement

Microsystem Technologies

, Volume 24, Issue 9, pp 3893–3900 | Cite as

On the application of micro hot embossing for mass fabrication of template-based dielectric resonator antenna arrays

  • Aqeel A. Qureshi
  • David M. Klymyshyn
  • Martin Börner
  • Markus Guttmann
  • Marc Schneider
  • Waqas Mazhar
  • Jürgen Mohr
Technical Paper

Abstract

In this article, application of micro-replication of polymers in the field of next generation mm-wave antennas is presented for the first time. The concept is applied to recently proposed template-based dielectric resonator antenna arrays fabricated by deep X-ray lithography. In this work, the array templates are replicated by hot embossing of polymethyl methacrylate (PMMA) layers using a nickel mold insert fabricated from the direct X-ray exposed PMMA master (LIGA process). Transfer quality of the master pattern is examined through measurements by optical microscope. Under controlled conditions, a number of templates are replicated demonstrating repeatable quality and consistent performance among the devices. A four element dielectric resonator antenna array is fabricated and measured for the impedance bandwidth response. This proposed methodology has the potential to enable low cost and mass utilization of dielectric resonator antennas and arrays in future millimeter-wave applications.

Notes

Acknowledgements

We acknowledge the Karlsruhe Nano Micro Facility (KNMF) (http://www.kit.edu/knmf) of the Karlsruhe Institute of Technology (KIT) for provision of access to instruments at their laboratories. Special thanks to Dr. Matthias Worgull for his guidance in hot embossing process.

References

  1. Andreas R (2017) Pre-5G and 5G: Will The mmWave Link Work? Microw J 60(12):56–72Google Scholar
  2. Bijumon PV, Freundorfer AP, Sayer M, Antar YMM (2007) High gain on-chip dielectric resonator antennas using silicon technology for millimeter wave wireless links. In: Can. Conf. Electr. Comput. Eng., pp 804–807Google Scholar
  3. Deng S-M, Chen T-W, Kan H-H (2001) A CPW-fed rectangular dielectric resonator antenna. In: Proc. APMC, Taipei, Taiwan, R.O.C, vol 2, pp 954–957Google Scholar
  4. Guttmann M, Schulz J, Saile V (2008) Lithographic fabrication of mold inserts, chapter 8. Wiley-Blackwell, pp 187–219Google Scholar
  5. Jaber M, Imran MA, Tafazolli R, Tukmanov A (2016) 5G backhaul challenges and emerging research directions: a survey. IEEE Access 4:1743–1766.  https://doi.org/10.1109/ACCESS.2016.2556011 CrossRefGoogle Scholar
  6. Lai Q, Almpanis G, Fumeaux C, Benedickter H, Vahldieck R (2008) Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka Band. IEEE Trans Antennas Propag 56(11):3589–3592CrossRefGoogle Scholar
  7. Long S, McAllister M, Shen L (1983) The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. 31(3):406–412CrossRefGoogle Scholar
  8. Nauwelaers B, Capelle AVD (1989) Surface wave losses of rectangular microstrip antennas. Electron Lett 25(11):696–697CrossRefGoogle Scholar
  9. Petosa A (2006) Dielectric resonator antenna handbook, 1st edn. Artech House Publishers, NorwoodGoogle Scholar
  10. Petosa A, Ittipiboon A (2010) Dielectric resonator antennas: a historical review and the current state of the art. IEEE Antennas Propag Mag 52(5):91–116CrossRefGoogle Scholar
  11. Qureshi AA, Klymyshyn DM, Tayfeh M, Mazhar W, Börner M, Mohr J (2017) Template-based dielectric resonator antenna arrays for millimeter-wave applications. IEEE Trans Antennas Propag 65(9):4576–4584.  https://doi.org/10.1109/TAP.2017.2724585 CrossRefGoogle Scholar
  12. Rashidian A, Klymyshyn DM, Boerner M, Mohr J (2010) Deep X-ray lithography processing for batch fabrication of thick polymer-based antenna structures. J Micromech Microeng 20(2):025026CrossRefGoogle Scholar
  13. Schanz G, Bade K (2008) Microelectroforming of metals, chapter 14. Wiley-Blackwell, pp 395–420Google Scholar
  14. Wang T, Li G, Huang B, Miao Q, Fang J, Li P, Tan H, Li W, Ding J, Li J, Wang Y (2017) Spectrum Analysis and Regulations for 5G. In: 5G Mob. Commun. Springer International Publishing, Cham, pp 27–50Google Scholar
  15. Wissmann M, Barié N, Guttmann M, Schneider M, Kolew A, Besser H, Pfleging W, Hofmann A, Erps JV, Beri S, Watté J (2015) Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallization. J Micromech Microeng 25(3):35008CrossRefGoogle Scholar
  16. Wissmann M, Guttmann M, Hartmann M (2010) Alternative technology for fabrication of nano- or microstructured mould inserts used for optical components. SPIE. Micromach. Microfabr. Process Technol, San Francisco, p 10Google Scholar
  17. Worgull M (2009) Hot embossing: theory and technology of microreplication, ser. Micro and nano technologies. Elsevier ScienceGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aqeel A. Qureshi
    • 1
  • David M. Klymyshyn
    • 1
  • Martin Börner
    • 2
  • Markus Guttmann
    • 2
  • Marc Schneider
    • 2
  • Waqas Mazhar
    • 1
  • Jürgen Mohr
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Institute for Microstructure TechnologiesKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations