Advertisement

Self-identification algorithm for zeolite-based thermal capacity gas sensor

  • M. Pouliquen
  • M. Denoual
  • C. Jorel
  • C. Radu
  • D. Robbes
  • J. Grand
  • H. Awala
  • S. Mintova
  • M. Harnois
  • O. de Sagazan
  • S. Inoue
  • E. Lebrasseur
  • K. Yamada
  • Y. Okamoto
  • A. Mita-Tixier
  • Y. Mita
Technical Paper
  • 46 Downloads

Abstract

We demonstrate a new operation mode of thermal gas sensor based on thermal capacity extraction with identification algorithm. The system is a silicon microstructure covered with zeolites operated at constant temperature while stimulated by heat pseudo-random sequence. The proposed detection principle is demonstrated at room temperature and atmospheric pressure through the detection of gas water molecules with an hydrophilic FAU-type zeolite coating. The identification algorithm is a continuous-time closed-loop identification algorithm based on the instrumental variable principle.

Notes

Acknowledgements

The project was supported by the French and Japanese bilateral exchange program PRC JSPS-CNRS and Normandy C2-MTM Project. Micro-fabrication process was done in the Takeda clean room at the University of Tokyo, partially financed by the MEXT Nanotechnology Platform.

References

  1. Awala H, Gilson J-P, Retoux R, Boullay P, Goupil J-M, Valtchev V, Mintova S (2015) Template-free nanosized faujasite-type zeolites. Nat Mater 14:447–451CrossRefGoogle Scholar
  2. Battiston FM, Ramseyer J-P, Lang HP, Baller MK, Gerber Ch, Gimzewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance frequency and bending readout. Sens Actuators B 77:122–131CrossRefGoogle Scholar
  3. Berger R, Gerber Ch, Gimzewski JK (1996) Thermal analysis using a micromechanical calorimeter. Appl Phys Lett 69(1):40–42CrossRefGoogle Scholar
  4. Denoual M, Allègre G, Delaunay S, Robbes D (2009) Capacitively coupled electrical substitution for resistive bolometer enhancement. Meas Sci Technol 20:015105CrossRefGoogle Scholar
  5. Denoual M, Robbes D, Inoue S, Mita Y, Grand J, Awala H, Mintova S (2017) Thermal resonant zeolite-based gas sensor. Sensor Actuators B Chem 245:179–182CrossRefGoogle Scholar
  6. Denoual M, Pouliquen M, Robbes D, de Sagazan O, Grand J, Awala H, Mintova S, Inoue S, Mita-Tixier A, Mita Y (2016) Microfabricated test structures for thermal gas sensors. In: Proc. of ICMTSGoogle Scholar
  7. Gilson M, Garnier H, Young P, Van den Hof P (2008) Instrumental variable methods for closed-loop continuous-time system identification. In: Garnier H, Wangs L (eds) Identification of continuous-time models from sampled data. Springer, London, pp 133–160CrossRefGoogle Scholar
  8. Van den Hof P (1998) Closed-loop issues in system identification. Annu Rev Control 22:173–186CrossRefGoogle Scholar
  9. Ljung L (1999) System identification: theory for the user. Prentice Hall, Upper Saddle RiverCrossRefzbMATHGoogle Scholar
  10. Senesac LR, Yi D, Greve A, Hales JH, Davis ZJ, Nicholson DM, Boisen A, Thundat T (2006) Microdifferential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102CrossRefGoogle Scholar
  11. Thomas S, Bazin P, Lakiss L, de Waele V, Mintova S (2011) In situ infrared molecular detection using palladium-containing zeolite films. Langmuir 27:14689–14695CrossRefGoogle Scholar
  12. Thomson GW (1946) The antoine equation for vapor-pressure data. Chem Rev 38:1–39CrossRefGoogle Scholar
  13. Urbiztondo MA, Peralta A, Pellejero I, Ses J, Pina MP, Dufour I, Santamaria J (2012) Detection of organic vapours with Si cantilevers coated with inorganic (zeolites) or organic (polymer) layers. Sens Actuators B 171–172:822–831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Pouliquen
    • 1
  • M. Denoual
    • 1
    • 6
  • C. Jorel
    • 1
  • C. Radu
    • 1
  • D. Robbes
    • 1
  • J. Grand
    • 2
  • H. Awala
    • 2
  • S. Mintova
    • 2
  • M. Harnois
    • 3
  • O. de Sagazan
    • 3
  • S. Inoue
    • 4
  • E. Lebrasseur
    • 4
  • K. Yamada
    • 4
  • Y. Okamoto
    • 4
  • A. Mita-Tixier
    • 5
    • 6
  • Y. Mita
    • 4
    • 6
  1. 1.GREYC-UMR6072ENSICAEN, University of CaenCaenFrance
  2. 2.LCS-UMR6506ENSICAEN, University of CaenCaenFrance
  3. 3.IETR-microcapteur-UMR6164University of RennesRennesFrance
  4. 4.iSMLUniversity of TokyoTokyoJapan
  5. 5.RCASTUniversity of TokyoTokyoJapan
  6. 6.LIMMS-UMI2820University of TokyoTokyoJapan

Personalised recommendations