A series expansion method aided design of CCII controller for a TITO system
Technical Paper
First Online:
Received:
Accepted:
- 16 Downloads
Abstract
Current mode circuits have attracted the attention of the design engineers due to their unique characteristics that are not found in their voltage mode counterparts. This article presents a series expansion method based design of current mode circuits for the control of a two input two output (TITO) system. The unique contribution of this work is the realization of the TITO controller using the second generation current conveyor circuits. The controller was practically implemented using AD844 integrated circuits. Simulation and the experimental results are presented for a pragmatic case study to demonstrate the efficacy of the proposed design methodology.
References
- Abdullah Y, Kacar F (2017) Band-pass filter with high quality factor based on current differencing transconductance amplifier and current amplifier. AEU Int J Electron Commun. http://dx.doi.org/10.1016/j.aeue.2017.03.007Google Scholar
- Abuelma’atti Muhammad Taher (1994) Current-mode multiphase oscillator using current followers. Microelectron J 25(6):457–461. https://doi.org/10.1016/0026-2692(94)90071-X CrossRefGoogle Scholar
- ACAR CEATC (2000) Current conveyor based proportional-integral-derivative (PID) controller and calculating optimum parameter tolerances. In: International conference on optimization of electrical and electronic equipmentsGoogle Scholar
- Aronhime P (1974) Transfer-function synthesis using a current conveyor. IEEE Trans Circuits Syst 21(2):312–313. https://doi.org/10.1109/TCS.1974.1083818 CrossRefGoogle Scholar
- Chunhua W et al (2011) A new current-mode current-controlled SIMO-type universal filter. AEU Int J Electron Commun 65(3):231–234. https://doi.org/10.1016/j.aeue.2010.02.010 CrossRefGoogle Scholar
- El-Adawy AA, Ahmed MS, Hassan OE (2002) Low voltage digitally controlled CMOS current conveyor. AEU Int J Electron Commun 56(3):137–144. https://doi.org/10.1078/1434-8411-54100086 CrossRefGoogle Scholar
- Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional-integral-derivative (PID) controller. J Electr Electron Eng 4(2):1248–1248. http://www.journals.istanbul.edu.tr/iujeee/article/view/1023011499/0
- Guo L, Songyin C (2014) Anti-disturbance control theory for systems with multiple disturbances: a survey. ISA Trans 53(4):846–849. https://doi.org/10.1016/j.isatra.2013.10.005 CrossRefGoogle Scholar
- Hwang C, Yen-Ping S, Rong-Yuang W (1997) An efficient FFT-based algorithm for power series expansions. Comput Chem Eng 21(9):1043–1049. https://doi.org/10.1016/S0098-1354(97)83146-8 CrossRefGoogle Scholar
- Katsuhiko O (1999) Modern control engineering. Book Rev 35:1181–1184Google Scholar
- Kuo BC (1997) Automatic control systems. Prentice-Hall, Upper Saddle RiverGoogle Scholar
- Maghade DK, Patre BM (2012) Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Trans 51(4):550–558. https://doi.org/10.1016/j.isatra.2012.02.006 CrossRefGoogle Scholar
- Pandey N, Nand D, Khan Z (2013) Single-input four-output current mode filter using operational floating current conveyor. Active Passive Electron Compon. https://doi.org/10.1155/2013/318560 Google Scholar
- Patranabis D, Ghosh D (1984) Integrators and differentiators with current conveyors. IEEE Trans Circuits Syst 31(6):567–569. https://doi.org/10.1109/TCS.1984.1085535 CrossRefGoogle Scholar
- Ranjan RK, Choubey CK, Nagar BC, Paul SK (2016) Comb filter for elimination of unwanted power line interference in biomedical signal. J Circuits Syst Comput 25(06):1650052. https://doi.org/10.1142/S0218126616500523 CrossRefGoogle Scholar
- Safari L, Minaei S (2016) A simple low voltage, high output impedance resistor based current mirror with extremely low input and output voltage requirements. In: 39th International conference on telecommunications and signal processing (TSP). IEEE. https://doi.org/10.1109/TSP.2016.7760872
- Sedra AS (1989) The current conveyor: history and progress. IEEE international symposium on circuits and systems. https://doi.org/10.1109/ISCAS.1989.100659
- Sedra A, Smith K (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory 17(1):132–134. https://doi.org/10.1109/TCT.1970.1083067 CrossRefGoogle Scholar
- Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralized PI (PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080. https://doi.org/10.1016/j.conengprac.2005.06.006 CrossRefGoogle Scholar
- Tek H, Anday FUAT (1989) Voltage transfer function synthesis using current conveyors. Electron Lett 25:1552–1553. https://doi.org/10.1049/el:1989104 CrossRefGoogle Scholar
- Toumazou C, Lidgey FJ, Haigh DG (1990) Analogue IC design: the current mode approach. IEE Circuits and Systems Series 2. Peter Peregrinus Ltd.Google Scholar
- Wang QG, Huang B, Guo X (2000) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39(4):407–418. https://doi.org/10.1016/S0019-0578(00)00028-8 CrossRefGoogle Scholar
- Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc G Circuits Devices Syst 137(2):63–77. https://doi.org/10.1049/ip-g-2.1990.0014 CrossRefGoogle Scholar
- Worapong T, Dumawipata T, Surakampontorn W (2007) Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers. AEU-Int J Electron Commun 61(4):209–214. https://doi.org/10.1016/j.aeue.2006.04.004 CrossRefGoogle Scholar
- Worapong T, Tanjaroen W, Pukkalanun T (2009) Current-mode multiphase sinusoidal oscillator using CDTA-based all pass sections. AEU-Int J Electron Commun 63(7):616–622. https://doi.org/10.1016/j.aeue.2008.05.001 CrossRefGoogle Scholar
- Zhuang M, Atherton DP (1994) PID controller design for a TITO system. IEE Proc Control Theory Appl 141(2):111–120. http://ieeexplore.ieee.org/document/4793493/
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2018