Skip to main content
Log in

Design, fabrication and testing of a 2 DOF compliant flexural microgripper

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the development of a monolithic two degrees of freedom (2 DOF), piezoelectric actuated microgripper for the manipulation of micro-objects. Micromanipulation and microassembly are the major subjects of interest in recent times and are becoming increasingly important in many domains. An effort is being made to develop a novel 2 DOF microgripper, each jaw being able to move independently to grasp and rotate objects of micro sizes. Microgripper is developed based on the compliant mechanism. The designed 2 DOF compliant microgripper is modeled using FEM and PRBM approach further validated experimentally. The microgripper is actuated using APA 120-S piezoelectric stack actuators. The displacement of the microgripper and the gripping force is measured by image processing technique using LabVIEW tools. The microgripper is subjected to various tests to measure the displacement amplification ratio and micromanipulation experiments. Wire of various sizes are used to test the grasping and rotating sequence of the microgripper. The theoretical, simulation and experimental results reveal the good performance of the microgripper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K et al (2004) Electromagnetic 2x2 mems optical switch. J Sel Top Quantum Electron 10(2):545–550

    Google Scholar 

  • Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K et al (2013) Robotic microassembly and micromanipulation at femto-st. J Micro Bio Robot 8(2):91–106

    Article  Google Scholar 

  • Ali N, Shakoor RI, Hassan MM et al (2011) Design, modeling and simulation of electrothermally actuated microgripper with integrated capacitive contact sensor. In: IEEE 14th international multitopic conference (INMIC). IEEE, pp 201–206

  • Amjad K, Bazaz SA, Lai Y et al (2008) Design of an electrostatic MEMS microgripper system integrated with force sensor. In: International conference on microelectronics, ICM 2008. IEEE, pp 236–239

  • Andersen KN, Carlson K, Petersen DH, Mølhave K, Eichhorn V, Fatikow S, Bøggild P (2008) Electrothermal microgrippers for pick-and-place operations. Microelectron Eng 85(5):1128–1130

    Article  Google Scholar 

  • Beroz J, Awtar S, Bedewy M, Sameh T, Hart AJ (2011) Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation. In: Proceedings of 26th American society of precision engineering annual meeting, Denver

  • Beyeler F, Muntwyler S, Nagy Z, Moser M, Nelson BJ (2007a) A multi-axis mems force-torque sensor for measuring the load on a microrobot actuated by magnetic fields. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2007. IEEE, pp 3803–3808

  • Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007b) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  • Boudaoud M, Haddab Y, Le Gorrec Y (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. Mechatron IEEE/ASME Trans 18(3):1130–1139

    Article  Google Scholar 

  • Chu PB, Pister SJ (1994) Analysis of closed-loop control of parallel-plate electrostatic microgrippers. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 820–825

  • Dafflon M, Lorent B, Clavel R (2006) A micromanipulation setup for comparative tests of microgrippers. In: International symposium on robotics, No. LSRO-CONF-2006-064

  • Dsouza RD, Karanth PN (2016) Experimental investigation of amplified piezoelectric stack actuators 50XS, 60S and 120S for the actuation of microgrippers. In: Future technologies conference (FTC). IEEE, pp 1282–1289

  • D'Souza RD, Mohamed AU, Tharakan OP, Mini A (2017) Effect of flexural hinges in the design of a 2 DOF compliant microgripper. In: Proceedings of the 3rd international conference on mechatronics and robotics engineering. ACM, pp 139–145

  • Dsouza R, Kumar S, Karanth NP (2015) Design, modeling and simulation of a 2-dof microgripper using piezoelectric actuator. Recent Trends Electron Commun Syst 2(1):10–18

    Google Scholar 

  • Duc TC, Lau GK, Creemer JF, Sarro PM (2008a) Electrothermal microgripper with large jaw displacement and integrated force sensors. Microelectromech Syst J 17(6):1546–1555

    Article  Google Scholar 

  • Duc TC, Lau GK, Sarro PM (2008b) Polymeric thermal microactuator with embedded silicon skeleton: part II—fabrication, characterization, and application for 2-DOF microgripper. J Microelectromech Syst 17(4):823–831

    Article  Google Scholar 

  • Enikov ET, Minkov LL, Clark S (2005) Microassembly experiments with transparent electrostatic gripper under optical and vision-based control. Ind Electron IEEE Trans 52(4):1005–1012

    Article  Google Scholar 

  • Gao Q, Zhang D, Xu D, Zhang Z (2012) A kinematics modeling and stress analysis method for flexible micro-gripper. In: International conference on mechatronics and automation (ICMA). IEEE, pp 825–830

  • Greminger MA, Yang G, Nelson BJ (2002) Sensing nanonewton level forces by visually tracking structural deformations. In: Proceedings of IEEE international conference on robotics and automation, ICRA'02, vol 2. IEEE, pp 1943–1948

  • Houston K, Eder C, Sieber A, Menciassi A, Carrozza MC, Dario P (2007) Polymer sensorised microgrippers using SMA actuation. In: IEEE international conference on robotics and automation. IEEE, pp 820–825

  • Jain RK, Datta S, Majumder S, Dutta A (2014) Development of multi micro manipulation system using ipmc micro grippers. J Intell Robot Syst 74(3–4):547–569

    Article  Google Scholar 

  • Kalaiarasi AR, Thilagar SH (2012) Design and modeling of electrostatically actuated microgripper. In: IEEE/ASME international conference on mechatronics and embedded systems and applications (MESA). IEEE, pp 7–11

  • Kemper M (2004) Development of a tactile low-cost microgripper with integrated force sensor. In: Proceedings of the IEEE international conference on control applications, vol 2. IEEE, pp 1461–1466

  • Khare P, Madhab GB, Kumar CS, Mishra PK (2007) Optimizing design of piezoelectric actuated compliant microgripper mechanism. In: 13th national conference on mechanisms and machines (NaCoMM07), IISc, Bangalore, 12–13 Dec 2007

  • Kim CJ, Pisano AP, Muller RS (1991) Overhung electrostatic microgripper. In: International conference on solid-state sensors and actuators. Digest of Technical Papers, TRANSDUCERS'91. IEEE, pp 610–613

  • Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6):1265

    Article  Google Scholar 

  • Kochan A (1997) European project develops ice gripper for micro-sized components. Assem Autom 17(2):114–115

    Article  Google Scholar 

  • Kohl M, Just E, Pfleging W, Miyazaki S (2000) Sma microgripper with integrated antagonism. Sens Actuators A Phys 83(1):208–213

    Article  Google Scholar 

  • Kyung J, Ko B, Ha Y, Chung G (2008) Design of a microgripper for micromanipulation of microcomponents usingsma wires and flexible hinges. Sens Actuators A Phys 141(1):144–150

    Article  Google Scholar 

  • Lang D, Kurniawan I, Tichem M, Karpuschewski B (2005) First investigations on force mechanisms in liquid solidification micro-gripping. In: The 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing, ISATP 2005. IEEE, pp 92–97

  • Lobontiu N (2002) Compliant mechanisms: design of flexure hinges. CRC press, Boca Raton

    Book  Google Scholar 

  • Lu K, Zhang J, Chen W, Jiang J, Chen W (2014) A monolithic microgripper with high efficiency and high accuracy for optical fiber assembly. In: IEEE 9th conference on industrial electronics and applications (ICIEA). IEEE, pp 1942–1947

  • Martinez JA, Panepucci RR (2007) Design, fabrication, and characterization of a microgripper device. In: Proceedings of the Florida conference on recent advances in robotics

  • Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for microobject manipulation. Sens Actuators A Phys 133(1):218–224

    Article  Google Scholar 

  • Noell W, Clerc PA, Dellmann L, Guldimann B, Herzig HP, Manzardo O, Marxer CR, Weible KJ, Dändliker R, De Rooij N (2002) Applications of SOI-based optical MEMS. IEEE J Sel Top Quantum Electron 8(1):148–154

    Article  Google Scholar 

  • Pierrat S, Brochard-Wyart F, Nassoy P (2004) Enforced detachment of red blood cells adhering to surfaces: statics and dynamics. Biophys J 87(4):2855–2869

    Article  Google Scholar 

  • Rabenorosoa K, Clévy C, Lutz P, Das AN, Murthy R, Popa D (2009) Precise motion control of a piezoelectric microgripper for microspectrometer assembly. In: ASME 2009 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 769–776

  • Rakotondrabe M, Haddab Y, Lutz P (2009) Development, modeling, and control of a micro-/nanopositioning 2-dof stick–slip device. Mechatron IEEE ASME Trans 14(6):733–745

    Article  Google Scholar 

  • Shi X, Chen W, Zhang J, Chen W (2013) Design, modeling, and simulation of a 2-dof microgripper for grasping and rotating of optical fibers. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, pp 1597–1602

  • Tamadazte B, Dembélé S, Le Fort-Piat N (2009) A multiscale calibration of a photon videomicroscope for visual servo control: application to mems micromanipulation and microassembly. Sens Transducers J 5:37–52. http://www.sensorsportal.com/HTML/DIGEST/P_SI_63.htm

    Google Scholar 

  • Wang D, Yang Q, Dong H (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. Mechatron IEEE/ASME Trans 18(1):138–147

    Article  Google Scholar 

  • Wierzbicki R, Adda C, Hotzendorfer H (2007) Electrostatic silicon microgripper with low voltage of actuation. In: International symposium on micro-nanomechatronics and human science, MHS'07. IEEE, pp 344–349

  • Xu Q (2012) Mechanism design and analysis of a novel 2-DOF compliant modular microgripper. In: 7th IEEE conference on industrial electronics and applications (ICIEA). IEEE, pp 1966–1971

  • Yang G, Gaines JA, Nelson BJ (2001) A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly. In: Proceedings of IEEE international conference on robotics and automation, ICRA, vol 1. IEEE, pp 133–138

  • Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of IEEE international conference on robotics and automation, vol 2. IEEE, pp 1761–1766

  • Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19(1):89–97

    Article  Google Scholar 

  • Zubir MNM, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33(4):362–370

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from SOLVE: The Virtual Lab @ NITK (Grant number: No.F.16-35/2009-DL Ministry of Human Resources Development) (http://www.solve.nitk.ac.in) and experimental facility provided by Centre for System Design (CSD): A Centre of excellence at NITK, Surathkal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Royson Donate Dsouza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dsouza, R.D., Navin, K.P., Theodoridis, T. et al. Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsyst Technol 24, 3867–3883 (2018). https://doi.org/10.1007/s00542-018-3861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3861-y

Navigation