Microsystem Technologies

, Volume 24, Issue 9, pp 3867–3883 | Cite as

Design, fabrication and testing of a 2 DOF compliant flexural microgripper

  • Royson Donate Dsouza
  • Karanth P. Navin
  • Theo Theodoridis
  • Priyaranjan Sharma
Technical Paper


This paper presents the development of a monolithic two degrees of freedom (2 DOF), piezoelectric actuated microgripper for the manipulation of micro-objects. Micromanipulation and microassembly are the major subjects of interest in recent times and are becoming increasingly important in many domains. An effort is being made to develop a novel 2 DOF microgripper, each jaw being able to move independently to grasp and rotate objects of micro sizes. Microgripper is developed based on the compliant mechanism. The designed 2 DOF compliant microgripper is modeled using FEM and PRBM approach further validated experimentally. The microgripper is actuated using APA 120-S piezoelectric stack actuators. The displacement of the microgripper and the gripping force is measured by image processing technique using LabVIEW tools. The microgripper is subjected to various tests to measure the displacement amplification ratio and micromanipulation experiments. Wire of various sizes are used to test the grasping and rotating sequence of the microgripper. The theoretical, simulation and experimental results reveal the good performance of the microgripper.



The authors acknowledge the funding support from SOLVE: The Virtual Lab @ NITK (Grant number: No.F.16-35/2009-DL Ministry of Human Resources Development) ( and experimental facility provided by Centre for System Design (CSD): A Centre of excellence at NITK, Surathkal, India.


  1. Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K et al (2004) Electromagnetic 2x2 mems optical switch. J Sel Top Quantum Electron 10(2):545–550Google Scholar
  2. Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K et al (2013) Robotic microassembly and micromanipulation at femto-st. J Micro Bio Robot 8(2):91–106CrossRefGoogle Scholar
  3. Ali N, Shakoor RI, Hassan MM et al (2011) Design, modeling and simulation of electrothermally actuated microgripper with integrated capacitive contact sensor. In: IEEE 14th international multitopic conference (INMIC). IEEE, pp 201–206Google Scholar
  4. Amjad K, Bazaz SA, Lai Y et al (2008) Design of an electrostatic MEMS microgripper system integrated with force sensor. In: International conference on microelectronics, ICM 2008. IEEE, pp 236–239Google Scholar
  5. Andersen KN, Carlson K, Petersen DH, Mølhave K, Eichhorn V, Fatikow S, Bøggild P (2008) Electrothermal microgrippers for pick-and-place operations. Microelectron Eng 85(5):1128–1130CrossRefGoogle Scholar
  6. Beroz J, Awtar S, Bedewy M, Sameh T, Hart AJ (2011) Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation. In: Proceedings of 26th American society of precision engineering annual meeting, DenverGoogle Scholar
  7. Beyeler F, Muntwyler S, Nagy Z, Moser M, Nelson BJ (2007a) A multi-axis mems force-torque sensor for measuring the load on a microrobot actuated by magnetic fields. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2007. IEEE, pp 3803–3808Google Scholar
  8. Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007b) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15CrossRefGoogle Scholar
  9. Boudaoud M, Haddab Y, Le Gorrec Y (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. Mechatron IEEE/ASME Trans 18(3):1130–1139CrossRefGoogle Scholar
  10. Chu PB, Pister SJ (1994) Analysis of closed-loop control of parallel-plate electrostatic microgrippers. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 820–825Google Scholar
  11. Dafflon M, Lorent B, Clavel R (2006) A micromanipulation setup for comparative tests of microgrippers. In: International symposium on robotics, No. LSRO-CONF-2006-064Google Scholar
  12. Dsouza RD, Karanth PN (2016) Experimental investigation of amplified piezoelectric stack actuators 50XS, 60S and 120S for the actuation of microgrippers. In: Future technologies conference (FTC). IEEE, pp 1282–1289Google Scholar
  13. D'Souza RD, Mohamed AU, Tharakan OP, Mini A (2017) Effect of flexural hinges in the design of a 2 DOF compliant microgripper. In: Proceedings of the 3rd international conference on mechatronics and robotics engineering. ACM, pp 139–145Google Scholar
  14. Dsouza R, Kumar S, Karanth NP (2015) Design, modeling and simulation of a 2-dof microgripper using piezoelectric actuator. Recent Trends Electron Commun Syst 2(1):10–18Google Scholar
  15. Duc TC, Lau GK, Creemer JF, Sarro PM (2008a) Electrothermal microgripper with large jaw displacement and integrated force sensors. Microelectromech Syst J 17(6):1546–1555CrossRefGoogle Scholar
  16. Duc TC, Lau GK, Sarro PM (2008b) Polymeric thermal microactuator with embedded silicon skeleton: part II—fabrication, characterization, and application for 2-DOF microgripper. J Microelectromech Syst 17(4):823–831CrossRefGoogle Scholar
  17. Enikov ET, Minkov LL, Clark S (2005) Microassembly experiments with transparent electrostatic gripper under optical and vision-based control. Ind Electron IEEE Trans 52(4):1005–1012CrossRefGoogle Scholar
  18. Gao Q, Zhang D, Xu D, Zhang Z (2012) A kinematics modeling and stress analysis method for flexible micro-gripper. In: International conference on mechatronics and automation (ICMA). IEEE, pp 825–830Google Scholar
  19. Greminger MA, Yang G, Nelson BJ (2002) Sensing nanonewton level forces by visually tracking structural deformations. In: Proceedings of IEEE international conference on robotics and automation, ICRA'02, vol 2. IEEE, pp 1943–1948Google Scholar
  20. Houston K, Eder C, Sieber A, Menciassi A, Carrozza MC, Dario P (2007) Polymer sensorised microgrippers using SMA actuation. In: IEEE international conference on robotics and automation. IEEE, pp 820–825Google Scholar
  21. Jain RK, Datta S, Majumder S, Dutta A (2014) Development of multi micro manipulation system using ipmc micro grippers. J Intell Robot Syst 74(3–4):547–569CrossRefGoogle Scholar
  22. Kalaiarasi AR, Thilagar SH (2012) Design and modeling of electrostatically actuated microgripper. In: IEEE/ASME international conference on mechatronics and embedded systems and applications (MESA). IEEE, pp 7–11Google Scholar
  23. Kemper M (2004) Development of a tactile low-cost microgripper with integrated force sensor. In: Proceedings of the IEEE international conference on control applications, vol 2. IEEE, pp 1461–1466Google Scholar
  24. Khare P, Madhab GB, Kumar CS, Mishra PK (2007) Optimizing design of piezoelectric actuated compliant microgripper mechanism. In: 13th national conference on mechanisms and machines (NaCoMM07), IISc, Bangalore, 12–13 Dec 2007Google Scholar
  25. Kim CJ, Pisano AP, Muller RS (1991) Overhung electrostatic microgripper. In: International conference on solid-state sensors and actuators. Digest of Technical Papers, TRANSDUCERS'91. IEEE, pp 610–613Google Scholar
  26. Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6):1265CrossRefGoogle Scholar
  27. Kochan A (1997) European project develops ice gripper for micro-sized components. Assem Autom 17(2):114–115CrossRefGoogle Scholar
  28. Kohl M, Just E, Pfleging W, Miyazaki S (2000) Sma microgripper with integrated antagonism. Sens Actuators A Phys 83(1):208–213CrossRefGoogle Scholar
  29. Kyung J, Ko B, Ha Y, Chung G (2008) Design of a microgripper for micromanipulation of microcomponents usingsma wires and flexible hinges. Sens Actuators A Phys 141(1):144–150CrossRefGoogle Scholar
  30. Lang D, Kurniawan I, Tichem M, Karpuschewski B (2005) First investigations on force mechanisms in liquid solidification micro-gripping. In: The 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing, ISATP 2005. IEEE, pp 92–97Google Scholar
  31. Lobontiu N (2002) Compliant mechanisms: design of flexure hinges. CRC press, Boca RatonCrossRefGoogle Scholar
  32. Lu K, Zhang J, Chen W, Jiang J, Chen W (2014) A monolithic microgripper with high efficiency and high accuracy for optical fiber assembly. In: IEEE 9th conference on industrial electronics and applications (ICIEA). IEEE, pp 1942–1947Google Scholar
  33. Martinez JA, Panepucci RR (2007) Design, fabrication, and characterization of a microgripper device. In: Proceedings of the Florida conference on recent advances in roboticsGoogle Scholar
  34. Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for microobject manipulation. Sens Actuators A Phys 133(1):218–224CrossRefGoogle Scholar
  35. Noell W, Clerc PA, Dellmann L, Guldimann B, Herzig HP, Manzardo O, Marxer CR, Weible KJ, Dändliker R, De Rooij N (2002) Applications of SOI-based optical MEMS. IEEE J Sel Top Quantum Electron 8(1):148–154CrossRefGoogle Scholar
  36. Pierrat S, Brochard-Wyart F, Nassoy P (2004) Enforced detachment of red blood cells adhering to surfaces: statics and dynamics. Biophys J 87(4):2855–2869CrossRefGoogle Scholar
  37. Rabenorosoa K, Clévy C, Lutz P, Das AN, Murthy R, Popa D (2009) Precise motion control of a piezoelectric microgripper for microspectrometer assembly. In: ASME 2009 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 769–776Google Scholar
  38. Rakotondrabe M, Haddab Y, Lutz P (2009) Development, modeling, and control of a micro-/nanopositioning 2-dof stick–slip device. Mechatron IEEE ASME Trans 14(6):733–745CrossRefGoogle Scholar
  39. Shi X, Chen W, Zhang J, Chen W (2013) Design, modeling, and simulation of a 2-dof microgripper for grasping and rotating of optical fibers. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, pp 1597–1602Google Scholar
  40. Tamadazte B, Dembélé S, Le Fort-Piat N (2009) A multiscale calibration of a photon videomicroscope for visual servo control: application to mems micromanipulation and microassembly. Sens Transducers J 5:37–52. Google Scholar
  41. Wang D, Yang Q, Dong H (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. Mechatron IEEE/ASME Trans 18(1):138–147CrossRefGoogle Scholar
  42. Wierzbicki R, Adda C, Hotzendorfer H (2007) Electrostatic silicon microgripper with low voltage of actuation. In: International symposium on micro-nanomechatronics and human science, MHS'07. IEEE, pp 344–349Google Scholar
  43. Xu Q (2012) Mechanism design and analysis of a novel 2-DOF compliant modular microgripper. In: 7th IEEE conference on industrial electronics and applications (ICIEA). IEEE, pp 1966–1971Google Scholar
  44. Yang G, Gaines JA, Nelson BJ (2001) A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly. In: Proceedings of IEEE international conference on robotics and automation, ICRA, vol 1. IEEE, pp 133–138Google Scholar
  45. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of IEEE international conference on robotics and automation, vol 2. IEEE, pp 1761–1766Google Scholar
  46. Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19(1):89–97CrossRefGoogle Scholar
  47. Zubir MNM, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33(4):362–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Royson Donate Dsouza
    • 1
    • 2
  • Karanth P. Navin
    • 2
  • Theo Theodoridis
    • 3
  • Priyaranjan Sharma
    • 2
  1. 1.Manipal Academy of Higher EducationDubaiUnited Arab Emirates
  2. 2.National Institute of Technology KarnatakaSurathkalIndia
  3. 3.University of SalfordManchesterUK

Personalised recommendations