Advertisement

Microsystem Technologies

, Volume 24, Issue 5, pp 2463–2471 | Cite as

Structure design and test of MEMS thermocouple infrared detector

  • Cao Lian-min
  • Zhang Ya-zhu
  • Sun Shi-jiao
  • Guo Hui
  • Zhang Zhen
Technical Paper
  • 148 Downloads

Abstract

Aiming at the problems of large volume and low yield of MEMS thermal reactor infrared detector at present, this paper designs a MEMS thermopile infrared detector based on two terminal beam structure. Through the analysis of the working principle of the thermopile infrared detector, discusses the structure and composition of materials and other parameters of the device influence on the detector performance, the detector layout design and fabrication processing. According to the test results of the infrared radiation test system, the results show the response and detection rate of the designed thermopile infrared detector are much higher than the reported one based on four end beam, with response rate of 1151.14 V/W, detection rate of 4.15 × 108 cm Hz1/2/W, and response time of 14.46 ms. It has a wide range of vacuum pressure response and high sensitivity to temperature response, and can be used as a vacuum sensor and a temperature sensor.

Notes

Author contributions

CL, ZY and SS participated in structural design and the detail preparation and processing, experimental test and discussion. GH and ZZ collected relevant literature and writing the manuscript, CL checking and reading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Chen SJ, Shen CH (2006) A new high-filling-factor CMOS-compatible thermopile. IEEE Trans Instrum Meas 56(4):1231–1238CrossRefGoogle Scholar
  2. Graf A, Arndt M, Sauer M et al (2007) Review of micromachined thermopiles for infrared detection. Meas Sci Technol 18(7):R59CrossRefGoogle Scholar
  3. Kiely JH, Morgan DV, Rowe DM (1994) The design and fabrication of a miniature thermoelectric generator using MOS processing techniques. Meas Sci Technol 5(2):182CrossRefGoogle Scholar
  4. Lahiji GR, Wise KD (1982) A batch-fabricated silicon thermopile infrared detector. IEEE Trans Electron Devices 29(1):14–22CrossRefGoogle Scholar
  5. Lee SJ, Lee YH, Suh SH et al (2001) Uncooled thermopile infrared detector with chromium oxide absorption layer. Sens Actuators A 95(1):24–28CrossRefGoogle Scholar
  6. Liu YD, Li T, Wang Y et al (2007) CMOS compatible MEMS P/N polycrystalline silicon thermopile IR detector. J Funct Mater Devices 13(3):226–232Google Scholar
  7. Roncaglia A, Mancarella F, Cardinali GC (2007) CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window. Sens Actuators B Chem 125(1):214–223CrossRefGoogle Scholar
  8. Sarro PM, Yashiro H, Herwaarden AW et al (1988) An integrated thermal infrared sensing array. Sens Actuators 14(2):191–201CrossRefGoogle Scholar
  9. Van Herwaarden AW, Sarro PM (1986) Thermal sensors based on the Seebeck effect. Sens Actuators 10(3):321–346CrossRefGoogle Scholar
  10. Winters HF, Coburn JW (1979) The etching of silicon with XeF2 vapor. Appl Phys Lett 34(1):70–73CrossRefGoogle Scholar
  11. Xu D, Xiong B, Wang Y et al (2009) Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process. J Micromech Microeng 19(12):125003CrossRefGoogle Scholar
  12. Xu D, Xiong B, Wang Y (2010) Design, fabrication and characterization of a front-etched micromachined thermopile for IR detection. J Micromech Microeng 20(11):115004CrossRefGoogle Scholar
  13. Yang H, Xiong B, Li T, Wang Y (2008) CMOS process compatible thermopile infrared detector. Semicond Technol 33(9):759–761Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cao Lian-min
    • 1
  • Zhang Ya-zhu
    • 1
  • Sun Shi-jiao
    • 1
  • Guo Hui
    • 1
  • Zhang Zhen
    • 1
  1. 1.College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations