Advertisement

3D printing of electrically conductive hybrid organic–inorganic composite materials

  • Shreyas Shah
  • MD Nahin Islam Shiblee
  • Julkarnyne M. Habibur Rahman
  • Samiul Basher
  • Sajjad Husain Mir
  • Masaru Kawakami
  • Hidemitsu Furukawa
  • Ajit Khosla
Technical Paper

Abstract

We present preparation, characterization, and 3D printing of electrically conductive acrylonitrile butadiene styrene (ABS) polymer. The conducting ABS prepared by doping carbon fibers (150 μm in length) at 200 °C by using a thermo-plasto mill, with different weight percentage (10–60 wt%) of carbon fibers in ABS polymer matrix. The conductivity was measured by four-point probe that determines percolation threshold occurs at 15 wt%. Conductivity of 0.067 S/m was observed at 50 wt%. Melt extrusion technique was employed in order to fabricate cylindrical filament with a diameter of 1.75 mm. A standard fused deposition modeling type printer (Makerbot) was used to print the developed filament. The developed ABS electrically conductive composite can be potentially used for various applications, such as 3D printing of wires, circuits, sensors, resistors, heaters, robotics, MEMS and active microfluidics devices.

Notes

Acknowledgements

Authors would like to thank Prof. Bungo Ochiai (Yamagata University), for his help and access to SEM, Prof. Masataka Sugimoto and Sathish K. Sukumaran (Yamagata University), for their help with Plasto mill. This study was partly supported by the Grant-in-Aid for Scientific Research (Category A, Project no. 17H01224) from the Japan Society for the Promotion of Science (JSPS), the Center Of Innovation (COI) program from the Japan Science and Technology Agency (JST), the Strategic Innovation Creation Project (SIP) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, and the Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) from the JST.

References

  1. Ambrosi A, Moo JGS, Pumera M (2016) 3D printing: helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv Funct Mater 26:803.  https://doi.org/10.1002/adfm.201670032 CrossRefGoogle Scholar
  2. Bassoli E, Gatto A, Iuliano L, Violante MG (2007) 3D printing technique applied to rapid casting. Rapid Prototyp J 13:148–155CrossRefGoogle Scholar
  3. Chou K-S, Huang K-C, Shih Z-H (2005) Effect of mixing process onelectromagnetic interference shielding effectiveness of nickel/acrylonitrile-butadiene-styrene composites. J Appl Polym Sci 97:128–135CrossRefGoogle Scholar
  4. Chung D, Khosla A, Seyfollahi S, Gray BL, Parameswaran A, Ramaseshan R, Kohli K (2011) Embedded process for flexible conductive electrodes for applications in tissue electrical impedance scanning (EIS). In: Sensors, 2011 IEEE, IEEE, pp 1893–1896Google Scholar
  5. Francis V, Jain PK (2016) Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys Prototyp 11:109–121CrossRefGoogle Scholar
  6. Gonzalez G, Chiappone A, Roppolo I, Fantino E, Bertana V, Perrucci F, Scaltrito L, Pirri F, Sangermano M (2017) Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer 109:246–253.  https://doi.org/10.1016/j.polymer.2016.12.051 CrossRefGoogle Scholar
  7. Gray BL, Khosla A (2010) Microfabrication and applications of nanoparticle doped conductive polymers. Nanoelectron Nanowires Mol Electron Nanodevices 227Google Scholar
  8. Guo SZ, Yang X, Heuzey MC, Therriault D (2015) 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7:6451–6456.  https://doi.org/10.1039/C5NR00278H CrossRefGoogle Scholar
  9. Hilbich DD, Khosla A, Gray BL, Shannon L (2011) Bidirectional magnetic microactuators for uTAS. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290H.  https://doi.org/10.1117/12.875788
  10. Kassegne S, Mehta B, Khosla A (2015) Microsyst Technol 21:1619.  https://doi.org/10.1007/s00542-014-2250-4 CrossRefGoogle Scholar
  11. Khosla A (2011) Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications (Doctoral Dissertation, Applied Science: School of Engineering Science). http://summit.sfu.ca/item/12017. Accessed 15 Jan 2018
  12. Khosla A (2012a) Nanoparticle-doped electrically-conducting polymers for flexible nano-micro systems. Electrochem Soc Interface 21(3–4):67–70.  https://doi.org/10.1149/2.F04123-4if CrossRefGoogle Scholar
  13. Khosla A (2012b) Smart garments in chronic disease management: progress and challenges. In: Proceedings of SPIE 8548, nanosystems in engineering and medicine, 85482O.  https://doi.org/10.1117/12.979667
  14. Khosla A, Gray BL (2009) Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer. Mater Lett 63(13–14):1203–1206.  https://doi.org/10.1016/j.matlet.2009.02.043 (ISSN 0167-577X) CrossRefGoogle Scholar
  15. Khosla A, Gray BL (2010) Preparation, micro-patterning and electrical characterization of functionalized carbon-nanotube polydimethylsiloxane nanocomposite polymer. Macromol Symp 297:210–218.  https://doi.org/10.1002/masy.200900165 CrossRefGoogle Scholar
  16. Khosla A, Gray BL (2012) New technologies for large-scale micropatterning of functional nanocomposite polymers. In: Proceedings of the SPIE 8344, nanosensors, biosensors, and info-tech sensors and systems 2012, 83440W.  https://doi.org/10.1117/12.915178
  17. Khosla A, Gray BL (2012b) Micropatternable multifunctional nanocomposite polymers for flexible soft NEMS and MEMS applications. ECS Trans 45(3):477–494.  https://doi.org/10.1149/1.3700913 (invited) CrossRefGoogle Scholar
  18. Khosla A, Patel C (2016) Microfabrication and characterization of UV micropatternable, electrically conducting polyaniline photoresist blends for MEMS applications. Microsyst Technol 22(2):371–378CrossRefGoogle Scholar
  19. Khosla A, Korčok JL, Gray BL, Leznoff DB, Herchenroeder JW, Miller D, Chen Z (2010) Fabrication and testing of integrated permanent micromagnets for microfluidic systems. In: Proceedings of SPIE 7593, microfluidics, BioMEMS, and medical microsystems VIII, 759316.  https://doi.org/10.1117/12.840942
  20. Khosla A, Hilbich D, Drewbrook C, Chung D, Gray BL (2011) Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12 × 24 inch substrates. In: Proceedings SPIE 7926, micromachining and microfabrication process technology XVI, 79260L.  https://doi.org/10.1117/12.876738
  21. Krzysztof I (2010) Nanoelectronics: nanowires, molecular electronics, and nanodevices. McGraw Hill Professional, U.S.AGoogle Scholar
  22. Lee JY, Tan WS, An J, Chua CK, Tang CY, Fane AG, Chong TH (2016) The potential to enhance membrane module design with 3D printing technology. J Membr Sci 499:480–490CrossRefGoogle Scholar
  23. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7(11):e49365.  https://doi.org/10.1371/journal.pone.0049365 CrossRefGoogle Scholar
  24. Li A, Khosla A, Drewbrook C, Gray BL (2011) Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290G.  https://doi.org/10.1117/12.873197
  25. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785.  https://doi.org/10.1038/nbt.2958 CrossRefGoogle Scholar
  26. Ozhikandathil J, Khosla A, Packirisamy M (2015) Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles. ECS J Solid State Sci Technol 4(10):S3048–S3052.  https://doi.org/10.1149/2.0091510jss CrossRefGoogle Scholar
  27. Packirisamy M, Ozhikandathil J, Khosla A (2017) Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials. US Patent Application No. 14/776,833, 17 Mar 2014Google Scholar
  28. Peterson GI, Larsen MB, Ganter MA, Storti DW, Boydston AJ (2015) 3D-Printed Mechanochromic Materials. ACS Appl Mater Interfaces 7(1):577–583.  https://doi.org/10.1021/am506745m CrossRefGoogle Scholar
  29. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114CrossRefGoogle Scholar
  30. Rahbar M, Seyfollahi S, Khosla A, Gray BL, Shannon L (2012) Fabrication process for electromagnetic actuators compatible with polymer based microfluidic devices. ECS Trans 41(20):7–17.  https://doi.org/10.1149/1.3687433 CrossRefGoogle Scholar
  31. Ryder G, Ion B, Green G, Harrison D, Wood B (2002) Rapid design and manufacture tools in architecture. Autom Constr 11:279–290CrossRefGoogle Scholar
  32. Sandron S, Heery B, Gupta V, Collins DA, Nesterenko EP, Nesterenko PN, Talebi M, Beirne S, Thompson F, Wallace GG, Brabazon D, Regan F, Paull B (2014) Analyst 139:6343–6347CrossRefGoogle Scholar
  33. Sealy C (2016) 3D printing makes bone scaffolds a better fit. Mater Today 19(10):557.  https://doi.org/10.1016/j.mattod.2016.11.005 CrossRefGoogle Scholar
  34. Sekhar PK et al (2017) A new low-temperature electrochemical hydrocarbon and NOx sensor. Sensors 17(12):2759CrossRefGoogle Scholar
  35. Shah S, Shiblee MI, Mir SH et al (2017) Microsyst Technol.  https://doi.org/10.1007/s00542-017-3694-0 Google Scholar
  36. Tian XY, Liu TF, Yang CC, Wang QR, Li DC (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A Appl Sci Manufac 88:198–205.  https://doi.org/10.1016/j.compositesa.2016.05.032 CrossRefGoogle Scholar
  37. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5.  https://doi.org/10.1038/srep11181

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shreyas Shah
    • 1
  • MD Nahin Islam Shiblee
    • 1
  • Julkarnyne M. Habibur Rahman
    • 1
  • Samiul Basher
    • 1
  • Sajjad Husain Mir
    • 2
  • Masaru Kawakami
    • 1
  • Hidemitsu Furukawa
    • 1
  • Ajit Khosla
    • 1
  1. 1.Department of Mechanical System Science, Graduate School of Science and EngineeringYamagata UniversityYonezawaJapan
  2. 2.Department of Material System Science, Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations