Material selection methodology for radio frequency (RF) microelectromechanical (MEMS) capacitive shunt switch

Technical Paper
  • 9 Downloads

Abstract

This paper describes the process of selecting the most optimum Radio Frequency Micro- electro- mechanical-systems (RF-MEMS) switch design using Ashby’s methodology. The switches are compared on the basis of parameters like actuation voltage, insertion loss, isolation and switching time using material selection charts. The chart shows that a low-voltage metal-to-metal contact shunt capacitive RF-MEMS having a bridge structure with Si-GaAs substrate, electroplated gold contacts and silicon nitride dielectric layer, is the most optimum of all the switches considered.

References

  1. Ashby MF (1999) Materials selection in mechanical design, 2nd edn. Butterworth-Heinemann Oxford, WalthamGoogle Scholar
  2. Balaraman D, Bhattacharya SK, Ayazi F, Papapolymerou J (2002) Low-cost low actuation voltage copper RF-MEMS switches. In: IEEE Microwave Theory Technical Symposium 2:1225–1228Google Scholar
  3. Chan R, Lesnick R, Becher D, Milton F (2003) Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J Microelectromech Syst 12:713–719CrossRefGoogle Scholar
  4. Chu CH, Shih WP, Chung SY, Tsai HC, Shing TK, Chang PZ (2007) A low actuation voltage electrostatic actuator for RF MEMS switch applications. J Micromech Microeng 17:1649–1656CrossRefGoogle Scholar
  5. Goldsmith C, Lin T-H, Powers B, Wu W-R, Norvell B (1995) Micromechanical membrane switches for microwave applications. IEEE Microw Theory Tech Symp 1:91–94Google Scholar
  6. Goldsmith C, Randall J, Eshelman S, Lin TH, Denniston D, Clhen S, Norvell B (1996) Characteristics of micromachined switches at microwave frequencies. In: Microwave symposium digest, IEEE MTT-S International, p 1141–1144Google Scholar
  7. Goldsmith C, Yao ZJ, Eshelman S, Denniston D (1998) Performance of low-loss RF MEMS capacitive switches. IEEE Microw Guided Wave Letters 8:269–271CrossRefGoogle Scholar
  8. Hyman D, Schmitz A, Warneke B, Hsu TY (1999) GaAs-compatible surface-micromachined RF MEMS switches. Electron Lett 35:224–226CrossRefGoogle Scholar
  9. Jaafar H, Fong LN, Yunus NAM (2011) Design and simulation of high performance RF MEMS series switch. In: Micro and nanoelectronics (RSM), IEEE Regional Symposium. p 349–353Google Scholar
  10. Jensen BD, Wan Z, Chow L, Saitou K, Kurabayashi K, Volakis JL (2003) Integrated electrothermal modeling of RF-MEMS switches for improved power handling capability. In: IEEE topical conference on wireless communication technology. p 10–11Google Scholar
  11. Leng G, Rebeiz GM (2001) DC-26 GHz MEMS series-shunt absorptive. In: Microwave symposium digest, IEEE MTT-S International, Vol 1. p 325–328Google Scholar
  12. Liu AQ (2010) RF MEMS switches and integrated switching circuits. Springer, New YorkCrossRefGoogle Scholar
  13. Muldavin JB, Rebeiz GM (1999) 30 GHz tuned MEMS switches. In: Microwave symposium digest, IEEE MTT-S International. p 1511–1514Google Scholar
  14. Muldavin JB, Rebeiz GM (2000) Novel series and shunt MEMS switch geometries for X-Band applications European microwave conference, ParisGoogle Scholar
  15. Muldavin JB, Rebeiz GM (2001) Nonlinear electro-mechanical modelling of MEMS switches. In: IEEE International microwave symposium, p 2119–2122Google Scholar
  16. Pacheco SP, Katehi LPB, Nguyen CT-C (2000) Design of low actuation voltage RF MEMS switch. In: Microwave symposium digest, IEEE MTT-S International, p 165–168Google Scholar
  17. Rebeiz GM (2003) RF MEMS: theory, design, and technology, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  18. Riz JB, Muldavin JB, Tan GL, Rebeiz GM (2000) Design of X-Band MEMS microstrip, microwave conference, 30th European, p 1–4Google Scholar
  19. Sharma AK, Gupta N (2014) Investigation of actuation voltage for non-uniform serpentine flexure design of RF-MEMS switch. Microsyst Technol 20:413–418CrossRefGoogle Scholar
  20. Sharma AK, Gupta N (2015) An improved design of MEMS switch for radio frequency applications. Int J Appl Electromagnet Mech 47:11–19Google Scholar
  21. Shen SC, Feng M (1999) Low actuation voltage RF MEMS switches with signal frequencies from 0.25 GHz to 40 GHz. In: IEEE International Electron Device MeetingGoogle Scholar
  22. Stefanini R, Chatras M, Blondy P, Rebeiz GM (2011) Miniature RF MEMS metal-contact switches for DC-20 GHz applications. In: microwave symposium digest (MTT)Google Scholar
  23. Tan GL, Rebeiz GM (2001) DC-26 GHz MEMS series-shunt absorptive switches. IEEE Microw Theory Tech Symp 1:325–328Google Scholar
  24. Ulm M, Walter T, Mueller-Fiedler R, Voigtlaender K (2000) K-band capacitive MEMS-switches, silicon monolithic integrated circuits in RF systems, digest of papers topical meeting. p 119–122Google Scholar
  25. Varadan VK, Vinoy KJ, Jose KA (2002) RF MEMS and their applications. Wiley, HobokenCrossRefGoogle Scholar
  26. Yao JJ (2000) Topical review—RF MEMS from a device perspective. J Micromech Microeng 10:9–38CrossRefGoogle Scholar
  27. Yao JJ, Chang MF (1995) A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz, 8th International conference on solid-state sensors and actuators, and eurosensors I X. Stockholm, p 25–29Google Scholar
  28. Yao ZJ, Chen S, Eshelman S, Denniston D, Goldsmith C (1999) Micromachined low-loss microwave switches. J Microelectromech Syst 8:129–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and SciencePilaniIndia

Personalised recommendations