Advertisement

Microsystem Technologies

, Volume 24, Issue 5, pp 2317–2324 | Cite as

Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs

  • Kalyan Biswas
  • Angsuman Sarkar
  • Chandan Kumar Sarkar
Technical Paper
  • 104 Downloads

Abstract

The non-planar 3D structure of multi-gate FinFETs makes them able to be scaled down to 20 nm and beyond and also have greater performance. But any variation of the fin cross-sectional shape has an impact on the device performance. In this paper, the impact of various fin cross-sectional shape on junctionless accumulation mode bulk FinFETs with thin fins and short channel length has been evaluated. Different important device performance parameters such as ON-current (ION), OFF current (IOFF), ratio of ON/OFF current, Threshold voltage (Vth), Subthreshold swing (SS), drain-induced barrier lowering (DIBL), transconductance (gm), transconductance generation factor (gm/Ids), cut-off frequency (fT), and maximum oscillation frequency (fmax) is evaluated for different fin shapes and analyzed. From the analysis, it is understood that shape of the fin cross-section has substantial impact on performance of the device. Improvement in SCEs was noticed in terms of ~ 25% reduction of DIBL and ~ 10% reduction in SS for the device with reduced fin top width. On the other hand, reduced fin top width degrades the RF performance as maximum frequency of oscillation decrease by ~ 10%. An optimal fin structure for the junctionless bulk FinFET is also obtained to have better SCEs and reasonable Analog/RF applications.

References

  1. ATLAS (2011) ATLAS user manual. Silvaco Int., Santa Clara (online). http://www.silvaco.com
  2. Choi JH, Kim TK, Moon JM, Yoon YG, Hwang BW, Kim DH, Lee S-H (2014) Origin of device performance enhancement of junctionless accumulation-mode (JAM) bulk FinFETs with high-κ gate spacers. IEEE Electron Device Lett 35(12):1182–1184CrossRefGoogle Scholar
  3. Colinge J-P et al (2010) Reduced electric field in junctionless transistors. Appl Phys Lett 96(7):073510CrossRefGoogle Scholar
  4. Crupi F, Alioto M, Franco J, Magnone P, Togo M, Horiguchi N, Groeseneken G (2012) Understanding the basic advantages of bulk FinFETs for sub- and near-threshold logic circuits from device measurements. In: IEEE transactions on circuits and systems—II: express briefs, vol 59, no 7Google Scholar
  5. Doria RT et al (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans Electron Devices 58(8):2511–2519CrossRefGoogle Scholar
  6. Duarte JP, Paydavosi N, Venugopalan S, Sachid A, Hu C (2013) Unified FinFET compact model: modelling trapezoidal triple-gate FinFETs. In: International conference on simulation of semiconductor processes and devices (SISPAD), Glasgow, pp 135–138Google Scholar
  7. Dubey Shashank, Kondekar Pravin N (2016) Fin shape dependent variability for strained SOI FinFETs. Microelectron Eng 162(16):63–68CrossRefGoogle Scholar
  8. Gaynor BD, Hassoun S (2014) Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans Electron Devices 61(8):2738–2744CrossRefGoogle Scholar
  9. Guin S, Sil M, Mallik A (2017) Comparison of logic performance of CMOS circuits implemented with junctionless and inversion-mode FinFETs. IEEE Trans Electron Devices 64(3):1366–1374CrossRefGoogle Scholar
  10. Ha D, Takeuchi H, Choi Y-K, King T-J (2004) Molybdenum gate technology for ultrathin-body MOSFETs and FinFETs. IEEE Trans Electron Devices 51(12):1989–2004CrossRefGoogle Scholar
  11. Hsu T-H, Lue H-T, Lai E-K, Hsieh J-Y, Wang Z-Y, Yang L-W, King Y-C, Yang T, Chen K-C,Hsieh K-Y, Liu R, Lu C-Y (2007) A high-speed BE-SONOS NAND flash utilizing the field enhancement effect of FinFET. In: IEDM technical digest, pp 913–916Google Scholar
  12. Huang AP, Yang ZC, Chu PK (2010) Hafnium-based high-k gate dielectrics. In: Chu PK (ed) Advances in solid state circuit technologies, ISBN: 978-953-307-086-5Google Scholar
  13. Jan CH et al (2012) A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In: 2012 International electron devices meeting, San Francisco, pp 3.1.1–3.1.4Google Scholar
  14. Kim J, Huynh HA, Kim S (2017) Modeling of FinFET parasitic source/drain resistance with polygonal epitaxy. IEEE Trans Electron Devices 64(5):2072–2079CrossRefGoogle Scholar
  15. Lee C-W et al (2010) Low subthreshold slope in junctionless multigate transistors. Appl Phys Lett 96(10):102106CrossRefGoogle Scholar
  16. Manoj CR, Rao VR (2007) Impact of high-k gate dielectrics on the device and circuit performance of nanoscale FinFETs. IEEE Electron Device Lett 28(4):295–297CrossRefGoogle Scholar
  17. Md Rezali FA, Othman NAF, Mazhar M, Wan Muhamad Hatta S, Soin N (2016) Performance and device design based on geometry and process considerations for 14/16-nm strained FinFETs. IEEE Trans Electron Devices 63(3):974–981CrossRefGoogle Scholar
  18. Mohankumar N, Syamal B, Sarkar CK (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans Electron Devices 57(4):820–826CrossRefGoogle Scholar
  19. Park T, Cho HJ, Chae JD, Han SY, Park D, Kim K, Yoon E, Lee JH (2006) Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs). IEEE Trans Electron Devices 53(3):481–487CrossRefGoogle Scholar
  20. Raskin J-P, Chung TM, Kilchytska V, Lederer D, Flandre D (2006) Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization. IEEE Trans Electron Devices 53(5):1088–1095CrossRefGoogle Scholar
  21. Rewari S, Nath V, Haldar S et al (2017) Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications. Microsyst Technol.  https://doi.org/10.1007/s00542-017-3436-3 Google Scholar
  22. Rosner W, Landgraf E, Kretz J, Dreeskornfeld L, Schafer H, Stalele M, Schulz T, Hofmann F, Luyken RJ, Specht M, Hartwich J, Pamler W, Risch L (2004) Nanoscale FinFETs for low power applications. Solid-State Electron 48(10–11):1819–1823CrossRefGoogle Scholar
  23. Sachid AB, Chen M-C, Hu C (2016) FinFET with high-κ spacers for improved drive current. IEEE Electron Device Lett 37(7):835–838CrossRefGoogle Scholar
  24. Sahay S, Kumar MJ (2017) Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans Electron Devices 64(3):1330–1335CrossRefGoogle Scholar
  25. Seoane N et al (2016) Comparison of fin-edge roughness and metal grain work function variability in InGaAs and Si FinFETs. IEEE Trans Electron Devices 63(3):1209–1216CrossRefGoogle Scholar
  26. Sikarwar V, Khandelwal S, Akashe S (2013) Analysis and design of low power SRAM cell using independent gate FinFET. Radioelectron Commun Syst 56(9):434–440CrossRefGoogle Scholar
  27. Sung PJ et al (2017) High-performance uniaxial tensile strained n-channel JL SOI FETs and triangular JL bulk FinFETs for nanoscaled applications. IEEE Trans Electron Devices 64(5):2054–2060MathSciNetCrossRefGoogle Scholar
  28. The International Technology Roadmap for Semiconductors (online). http://www.itrs.net
  29. Trivedi N, Kumar M, Haldar S et al (2017) Assessment of analog RF performance for insulated shallow extension (ISE) cylindrical surrounding gate (CSG) MOSFET incorporating gate stack. Microsystem technology, pp 1–8.  https://doi.org/10.1007/s00542-017-3456-z
  30. Wang L et al (2014) 3D coupled electro-thermal FinFET simulations including the fin shape dependence of the thermal conductivity. In: International conference on simulation of semiconductor processes and devices (SISPAD), Yokohama, pp 269–272Google Scholar
  31. Xu W, Yin H, Ma X, Hong P, Xu M, Meng L (2015) Novel 14-nm scallop-shaped FinFETs (S-FinFETs) on bulk-Si substrate. Nanoscale Res Lett 10(249):1–7Google Scholar
  32. Yu Z, Chang S, Wang H, He J, Huang Q (2015) Effects of Fin shape on sub-10 nm FinFETs. J Comput Electron 14(2):515–523CrossRefGoogle Scholar
  33. Zhang J, Si M, Lou XB, Wu W, Gordon RG, Ye PD (2015) InGaAs 3D MOSFETs with drastically different shapes formed by anisotropic wet etching. In: 2015 IEEE international electron devices meeting (IEDM), Washington, DC, pp 15.2.1–15.2.4Google Scholar
  34. Zhang J, Si M, Lou XB, Wu W, Gordon RG, Ye PD (2015) InGaAs 3D MOSFETs with drastically different shapes formed by anisotropic wet etching. In: IEEE international electron devices meeting (IEDM)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kalyan Biswas
    • 1
  • Angsuman Sarkar
    • 2
  • Chandan Kumar Sarkar
    • 3
  1. 1.ECE DepartmentMCKV Institute of EngineeringLiluahIndia
  2. 2.Kalyani Government Engineering CollegeKalyaniIndia
  3. 3.Nano Device Simulation Laboratory, ETCE DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations