Microsystem Technologies

, Volume 24, Issue 5, pp 2401–2408 | Cite as

Paired-wire carrying current actuators and piezoelectric beam sensors for microelectromechanical systems

Technical Paper
  • 56 Downloads

Abstract

An alternative actuator for MEMS/NEMS device is proposed and analyzed. The actuator is based on the paired-wires (PW) carrying current concept, which makes the actuator extremely simple and cost-effective. This actuator is implemented in the MEMS/NEMS devices for fatigue and fracture characterization of nanomaterials. For designing the sensor part of this MEMS/NEMS device, a piezoelectric (PZ) beam was used. After designing the actuator and sensor parts of this MEMS/NEMS device, which is called PW–PZ device, the dynamic response of the PW–PZ device is fully investigated. Furthermore, the effects of all important physical parameters on the dynamics response of the PW–PZ device were studied and discussed. Considering the effects of the nanomaterial sample showed an initial design of this actuator and sensor can be used for a broad range of nanomaterial samples regardless of their stiffness or material. This PW–PZ device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterial samples as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

References

  1. Agrawal R, Peng B, Espinosa HD (2009) Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett 9(12):4177–4183CrossRefGoogle Scholar
  2. Bao W, Su Z, Zheng C, Ning J, Xu S (2016) Carrier localization effects in InGaN/GaN multiple-quantum-wells LED nanowires: luminescence quantum efficiency improvement and “negative” thermal activation energy. Sci Rep 6:34545CrossRefGoogle Scholar
  3. Fan Z, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC et al (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21(37):3730–3743CrossRefGoogle Scholar
  4. Farsad E, Abbasi SP, Goodarzi A, Zabihi MS (2011) Experimental parametric investigation of temperature effects on 60W-QCW diode laser. World Acad Sci Eng Technol 59:1190–1196Google Scholar
  5. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9(10):768–779CrossRefGoogle Scholar
  6. Goldberger J, He R, Zhang Y, Lee S (2003) Single-crystal gallium nitride nanotubes. Nature 422(6932):599CrossRefGoogle Scholar
  7. Hong YJ, Lee CH, Yoon A, Kim M, Seong HK, Chung HJ et al (2011) Visible-color-tunable light-emitting diodes. Adv Mater 23(29):3284–3288CrossRefGoogle Scholar
  8. Hosseinian E, Pierron ON (2013) Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24):12532–12541CrossRefGoogle Scholar
  9. Huang JY, Zheng H, Mao SX, Li Q, Wang GT (2011) In situ nanomechanics of GaN nanowires. Nano Lett 11(4):1618–1622CrossRefGoogle Scholar
  10. Kahn H, Ballarini R, Mullen RL, Heuer AH (1999) Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 455, no 1990. The Royal Society, pp 3807–3823Google Scholar
  11. Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7(11):728–732CrossRefGoogle Scholar
  12. Kong NA, Ha DS, Erturk A, Inman DJ (2010) Resistive impedance matching circuit for piezoelectric energy harvesting. J Intell Mater Syst Struct 21(13):1293–1302CrossRefGoogle Scholar
  13. Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6(3):320CrossRefGoogle Scholar
  14. Li C, Wright JB, Liu S, Lu P, Figiel JJ, Leung B et al (2017a) Nonpolar InGaN/GaN core-shell single nanowire lasers. Nano Lett 17(2):1049–1055CrossRefGoogle Scholar
  15. Li W, Xu H, Zhai T, Yu H, Chen Z, Qiu Z et al (2017b) Enhanced triethylamine sensing properties by designing Au@ SnO2/MoS2 nanostructure directly on alumina tubes. Sens Actuators B Chem 83:209–215Google Scholar
  16. Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y et al (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7(11):749–756CrossRefGoogle Scholar
  17. Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21(20):3982–3989CrossRefGoogle Scholar
  18. Maloney JM, Schreiber DS, DeVoe DL (2003) Large-force electrothermal linear micromotors. J Micromech Microeng 14(2):226CrossRefGoogle Scholar
  19. McAlpine MC, Friedman RS, Jin S, Lin KH, Wang WU, Lieber CM (2003) High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett 3(11):1531–1535CrossRefGoogle Scholar
  20. Mousavi AK, Leseman ZC (2012) Basic MEMS actuators. In: Encyclopedia of nanotechnology. Springer, Amsterdam, pp 173–185Google Scholar
  21. Patil VL, Vanalakar SA, Patil PS, Kim JH (2017) Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens Actuators B Chem 239:1185–1193CrossRefGoogle Scholar
  22. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104CrossRefGoogle Scholar
  23. Pisano AP, Cho YH (1990) Mechanical design issues in laterally-driven microstructures. Sens Actuators A 23(1–3):1060–1064CrossRefGoogle Scholar
  24. Que L, Park JS, Gianchandani YB (1999) Bent-beam electro-thermal actuators for high force applications. In: Twelfth IEEE international conference on micro electro mechanical systems, MEMS. IEEE, pp 31–36Google Scholar
  25. Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators A 145:380–386CrossRefGoogle Scholar
  26. Richter H, Misawa EA, Lucca DA, Lu H (2001) Modeling nonlinear behavior in a piezoelectric actuator. Precision Eng 25(2):128–137CrossRefGoogle Scholar
  27. Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678CrossRefGoogle Scholar
  28. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRefGoogle Scholar
  29. Wang QM, Zhang Q, Xu B, Liu R, Cross LE (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J Appl Phys 86(6):3352–3360CrossRefGoogle Scholar
  30. Zamani Kouhpanji MR (2017a) Investigating the classical and non-classical mechanical properties of GaN nanowires. MS thesis, University of New Mexico. http://digitalrepository.unm.edu/ece_etds/354
  31. Zamani Kouhpanji MR (2017b) Designing and analyzing sensor and actuator of a nano/micro-system for fatigue and fracture characterization of nanomaterials. World Academy of Science, Engineering and Technology, International Science Index 130. Int J Mech Aerosp Ind Mechatron Manuf Eng 11(10):1677–1685Google Scholar
  32. Zamani Kouhpanji MR (2017c) Studying the dynamical response of nano-microelectromechanical devices for nanomechanical testing of nanostructures. World Academy of Science, Engineering and Technology, International Science Index 131. Int J Mech Aerosp Ind Mechatron Manuf Eng 11(11):1786–1792Google Scholar
  33. Zamani Kouhpanji MR, Jafaraghaei U (2017) A semianalytical approach for determining the nonclassical mechanical properties of materials, arXiv preprint. arXiv:1706.06559
  34. Zamani Kouhpanji MR, Behzadirad M, Busani T (2017) Classical continuum theory limits to determine the size-dependency of mechanical properties of GaN NWs. J Appl Phys 122(22):225113CrossRefGoogle Scholar
  35. Zamiri M, Anwar F, Klein BA, Rasoulof A, Dawson NM, Schuler-Sandy T, Krishna S (2016) Antimonide-based membranes synthesis integration and strain engineering. Proc Natl Acad Sci 2016:15645Google Scholar
  36. Zhang Y, Wang F, Zang P, Wang J, Mao S, Zhang X, Lu J (2014) In-situ observation of crack propagation through the nucleation of nanoscale voids in ultra-thin, freestanding Ag films. Mater Sci Eng, A 618:614–620CrossRefGoogle Scholar
  37. Zhu Y, Chang TH (2015) A review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microeng 25(9):093001CrossRefGoogle Scholar
  38. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for High Technology Materials, Electrical and Computer Engineering Department, Mechanical Engineering DepartmentUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations