Improved field emission properties of ZnO NRs using Al-doped and post oxygen annealing

  • Bahram Azizollah Ganji
  • Marziyeh Advand
  • Mohammadreza Kolahdouz
Technical Paper
  • 16 Downloads

Abstract

In this paper, we synthesized Al doped ZnO (AZO) nanorods (NRs) and characterized their field emission properties. In addition, we considered the effect of post annealing process on the field emission characteristics of pure and doped ZnO NRs. Our results show that the field emission properties improve with the increased Al doping concentration in ZnO NRs. The field enhancement factor β is enhanced by ∼ 25% through 4% (weight ratio) Al doping. The field emission properties can be further improved by annealing in oxygen environment. Oxygen annealing modified the crystal structure of ZnO NRs and improves their field emission properties. Therefore, the 4 wt% Al doped sample with oxygen post annealing demonstrates the best field emission performance.

References

  1. Abdi Y, Koohsorkhi J, Mohajerzadeh S, Darbari S, Sanaee Z (2007) Embedded vertically grown carbon nanotubes for field emission applications. J Vac Sci Technol B 25(3):822–828CrossRefGoogle Scholar
  2. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH et al (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75(20):3129–3131CrossRefGoogle Scholar
  3. Doostani N, Darbari S, Mohajerzadeh S, Moravvej-Farshi MK (2013) Fabrication of highly sensitive field emission based pressure sensor, using CNTs grown on micro-machined substrate. Sens Actuators A 201:310–315CrossRefGoogle Scholar
  4. Edgcombe CJ, Valdrè U (2002) Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. I. Experiments and computation. Philos Mag Part B 82(9):987–1007Google Scholar
  5. Feng Q, Wang W, Jiang K, Huang J, Zhang Y, Song W, Tan R (2012) Effect of deposition condition and UV-ozone post-treatment on work function of DC magnetron sputtered AZO thin films. J Mater Sci Mater Electron 23:267–272.  https://doi.org/10.1007/s10854-011-0400-3CrossRefGoogle Scholar
  6. Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc Lond A Math Phys Eng Sci 119(781):173–181 (The Royal Society)CrossRefMATHGoogle Scholar
  7. Gadzuk JW, Plummer EW (1973) Field emission energy distribution (FEED). Rev Mod Phys 45(3):487CrossRefGoogle Scholar
  8. Ghatak KP, Bhattacharya S, Mondal A, Debbarma S, Ghorai P, Bhattacharjee A (2013) On the Fowler–Nordheim field emission from quantum-confined optoelectronic materials in the presence of light waves. Quantum Matter 2(1):25–41CrossRefGoogle Scholar
  9. Grzebyk T, Górecka-Drzazga A, Dziuban JA (2014) Vertical MEMS-type field-emission electron source. In: 27th international vacuum nanoelectronics conference (IVNC), Engelberg, Swizerland, 6–10 July 2014Google Scholar
  10. Li C, Yang Y, Sun XW, Lei W, Zhang XB, Wang BP, Wang JX et al (2007) Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect. Nanotechnology 18(13):135604CrossRefGoogle Scholar
  11. Li L, Ke Y, Wang Y, Zhu Z (2010) Photoluminescence and field emission properties of Sn-doped ZnO microrods. Appl Surf Sci 256(11):3361–3364CrossRefGoogle Scholar
  12. Liao L, Li JC, Wang DF, Liu C, Fu Q (2005) Electron field emission studies on ZnO nanowires. Mater Lett 59(19):2465–2467CrossRefGoogle Scholar
  13. Michalas L, Garg A, Venkattraman A, Koutsoureli M, Alexeenko A, Peroulis D, Papaioannou G (2012) A study of field emission process in electrostatically actuated MEMS switches. Microelectron Reliab 52(9):2267–2271CrossRefGoogle Scholar
  14. Milanovic V, Doherty L, Teasdale DA, Parsa S, Pister KSJ (2001) Micromachining technology for lateral field emission devices. IEEE Trans Electron Dev 48(1):166–173CrossRefGoogle Scholar
  15. Narimani K, Nayeri FD, Kolahdouz M, Ebrahimi P (2012) Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens Actuators B Chem 224:338–343CrossRefGoogle Scholar
  16. Nayeri FD, Karegar F, Kolahdouz M, Asl-Soleimani E (2014a) Low temperature insertion of energy levels into the ZnO nanorod’s bandgap by nanotube conversion. Thin Solid Films 562:343–346CrossRefGoogle Scholar
  17. Nayeri FD, Narimani K, Kolahdouz M, Asl-Soleimani E, Salehi F (2014b) Surface structure optimization for cost effective field emission of zinc oxide nanorods on glass substrate. Thin Solid Films 571:154–1608CrossRefGoogle Scholar
  18. Park K-S, Choi Y-J, Ahn M-W, Kim D-W, Sung Y-M, Park J-G, Jin Choi K (2009) Enhancement of field-emission properties in ZnO nanowire array by post-annealing in H2 ambient. J Nanosci Nanotechnol 9(7):4328–4332CrossRefGoogle Scholar
  19. Poornajar M, Marashi P, Fatmehsari DH, Esfahani MK (2009) Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram Int 42(1):173–184CrossRefGoogle Scholar
  20. Ruan J, Papaioannou GJ, Nolhier N, Mauran N, Bafleur M, Coccetti F, Plana R (2008) ESD failure signature in capacitive RF MEMS switches. Microelectron Reliab 48(8):1237–1240CrossRefGoogle Scholar
  21. Song J, Kulinich Sergei A, Yan Jian, Li Zhigang, He Jianping, Kan Caixia, Zeng Haibo (2013) Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters. Adv Mater 25(40):5750–5755CrossRefGoogle Scholar
  22. Song X, Zhao L, Zhang Z, Zhang G, She J, Deng S, Xu N, Chen J (2015) Comparative study of field emission from individual ZnO nanowire with and without NH 3 plasma treatment. In: 28th international vacuum nanoelectronics conference (IVNC), pp 150–151. IEEE, New YorkGoogle Scholar
  23. Teo KBK, Minoux E, Hudanski L, Peauger F, Schnell J-P, Gangloff L et al (2005) Microwave devices: carbon nanotubes as cold cathodes. Nature 437(7061):968CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations