Microsystem Technologies

, Volume 24, Issue 5, pp 2325–2331 | Cite as

Fabricated polycarbonate microchannel with different films using CO2 laser beam of two-pass for microfluidic chip

  • Zengliang Hu
  • Xueye Chen
  • Zhen Yao
  • Xiaodong Chen
  • Baoding Fu
  • Lei Zhang
Technical Paper
  • 57 Downloads

Abstract

This paper demonstrates a novel and low-cost method for fabricating microchannel on polycarbonate (PC) sheet using CO2 laser. In the work, many microchannels are processed by CO2 laser beam of two-pass. Three sheets with different films are researched for increasing the cleanliness of PC sheet surface after CO2 laser processing. The experimental results show the surface of PC sheet with transparent wallpaper is most clear, but it has very large influence on width and depth of microchannel. In the next experiment, Taguchi method is used for optimizing CO2 laser processing parameters for decreasing the deviation of width and depth of microchannel. In the study, smaller-the-better signal-to-noise ratio is calculated. The result shows laser power is maximum influence factor and microchannel length is minimum influence factor on the deviation of width and depth of microchannel. The optimal processing parameters are laser power of 8 W, laser moving velocity of 15 mm/s and microchannel length of 100 mm. A verified experiment is preformed using the optimal processing parameters.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (51405214), The Key Project of Department of Education of Liaoning Province (JZL201715401).

References

  1. Antończak AJ, Nowak M, Szustakiewicz K, Pigłowski J, Abramski KM (2013) The influence of organobentonite clay on CO2 laser grooving of nylon 6 composites. Int J Adv Manuf Technol 69(5–8):1389–1401CrossRefGoogle Scholar
  2. Chen X, Hu Z (2017) An effective method for fabricating microchannels on the polycarbonate (PC) substrate with CO2 laser. Int J Adv Manuf Technol 92:1365–1370CrossRefGoogle Scholar
  3. Chen X, Li T (2016) A novel design for passive misscromixers based on topology optimization method. Biomed Microdevice 18(4):1–15CrossRefGoogle Scholar
  4. Chen X, Zhang L (2018) Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens Actuators B Chem 254:648–659CrossRefGoogle Scholar
  5. Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRefGoogle Scholar
  6. Chen JJ, Shen CM, Ko YW (2013a) Analytical study of a microfluidic DNA amplification chip using water cooling effect. Biomed Microdevice 15(2):261–278CrossRefGoogle Scholar
  7. Chen X, Liu C, Xu Z et al (2013b) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103CrossRefGoogle Scholar
  8. Chen X, Li T, Zeng H et al (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRefGoogle Scholar
  9. Chen XY, Gao Q, Wang XL, Li XD (2016b) Experimental design and parameter optimization for laser three-dimensional (3-D) printing Lasers in engineering. Old City Publishing, Philadelphia, p 33Google Scholar
  10. Chen X, Li T, Shen J (2016c) CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int Polym Proc 31(2):233–238CrossRefGoogle Scholar
  11. Chen X, Shen J, Zhou M (2016d) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRefGoogle Scholar
  12. Chen X, Li T, Fu B (2016e) Surface roughness study on microchannels of CO2 laser fabricating PMMA-based microfluidic chip. Surf Rev Lett 24:1750017CrossRefGoogle Scholar
  13. Chen X, Li T, Shen J et al (2017a) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678CrossRefGoogle Scholar
  14. Chen X, Li T, Hu Z (2017b) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol 2017:1–8Google Scholar
  15. Cortes-Quiroz CA, Zangeneh M, Goto A (2009) On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid Nanofluid 7(1):29–43CrossRefGoogle Scholar
  16. Do MT, Li Q, Nguyen TTN et al (2014) High aspect ratio submicrometer two-dimensional structures fabricated by one-photon absorption direct laser writing. Microsyst Technol 20(10–11):2097–2102CrossRefGoogle Scholar
  17. Hansen CL, Quake SR, Berger JM (2014) Microfluidic protein crystallography techniques: U.S. Patent 8709153Google Scholar
  18. Hsu YC, Chen TY (2007) Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices. Biomed Microdevice 9(4):513–522CrossRefGoogle Scholar
  19. Huang BL, Ren L, Zhao J et al (2013) Solvothermal synthesis of carboxyl functionalized mesoporous resins in microfluidic chip for water treatments. Adv Mater Res Trans Tech Publ 750:1300–1303Google Scholar
  20. Jeng JY, Wong YS, Ho CT (2001) Over-curing reduction of parts fabricated by the solid laser-diode plotter rapid prototyping system using the Taguchi method. Int J Adv Manuf Technol 18(9):683–691CrossRefGoogle Scholar
  21. Li H, Fan Y, Kodzius R et al (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379CrossRefGoogle Scholar
  22. Lin YC, Lee CC, Lin HS et al (2017) Fabrication of microfluidic structures in quartz via micro machining technologies. Microsyst Technol 23(6):1661–1669CrossRefGoogle Scholar
  23. Liu Z, Shum HC (2013) Fabrication of uniform multi-compartment particles using microfluidic electrospray technology for cell co-culture studies. Biomicrofluidics 7(4):044117CrossRefGoogle Scholar
  24. Prakash S, Kumar S (2015) Profile and depth prediction in single-pass and two-pass CO2 laser microchanneling processes. J Micromech Microeng 25(3):035010MathSciNetCrossRefGoogle Scholar
  25. Qi H, Chen T, Yao L, Zuo T (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Lasers Eng 47(5):594–598CrossRefGoogle Scholar
  26. Rötting O, Röpke W, Becker H et al (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRefGoogle Scholar
  27. Sun Y, Satyanarayan MVD, Nguyen NT, Kwok YC (2008) Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sens Actuators B Chem 130(2):836–841CrossRefGoogle Scholar
  28. Syrcos GP (2003) Die casting process optimization using Taguchi methods. J Mater Process Technol 135(1):68–74CrossRefGoogle Scholar
  29. Ta BQ, Le Thanh H, Dong T et al (2015) Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J Micromech Microeng 25(9):094004CrossRefGoogle Scholar
  30. Yang CB, Deng CS, Chiang HL (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59(9):1103–1111CrossRefGoogle Scholar
  31. Yang W, Zhu T, Jin Y et al (2017) Facile fabrication of helical microfluidic channel based on rope coiling effect. Microsyst Technol 23(7):2957–2964CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Zengliang Hu
    • 1
  • Xueye Chen
    • 1
  • Zhen Yao
    • 1
  • Xiaodong Chen
    • 1
  • Baoding Fu
    • 1
  • Lei Zhang
    • 1
  1. 1.Faulty of Mechanical Engineer and AutomationLiaoning University of TechnologyJinzhouChina

Personalised recommendations