Skip to main content
Log in

Fabricated polycarbonate microchannel with different films using CO2 laser beam of two-pass for microfluidic chip

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper demonstrates a novel and low-cost method for fabricating microchannel on polycarbonate (PC) sheet using CO2 laser. In the work, many microchannels are processed by CO2 laser beam of two-pass. Three sheets with different films are researched for increasing the cleanliness of PC sheet surface after CO2 laser processing. The experimental results show the surface of PC sheet with transparent wallpaper is most clear, but it has very large influence on width and depth of microchannel. In the next experiment, Taguchi method is used for optimizing CO2 laser processing parameters for decreasing the deviation of width and depth of microchannel. In the study, smaller-the-better signal-to-noise ratio is calculated. The result shows laser power is maximum influence factor and microchannel length is minimum influence factor on the deviation of width and depth of microchannel. The optimal processing parameters are laser power of 8 W, laser moving velocity of 15 mm/s and microchannel length of 100 mm. A verified experiment is preformed using the optimal processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antończak AJ, Nowak M, Szustakiewicz K, Pigłowski J, Abramski KM (2013) The influence of organobentonite clay on CO2 laser grooving of nylon 6 composites. Int J Adv Manuf Technol 69(5–8):1389–1401

    Article  Google Scholar 

  • Chen X, Hu Z (2017) An effective method for fabricating microchannels on the polycarbonate (PC) substrate with CO2 laser. Int J Adv Manuf Technol 92:1365–1370

    Article  Google Scholar 

  • Chen X, Li T (2016) A novel design for passive misscromixers based on topology optimization method. Biomed Microdevice 18(4):1–15

    Article  Google Scholar 

  • Chen X, Zhang L (2018) Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens Actuators B Chem 254:648–659

    Article  Google Scholar 

  • Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149

    Article  Google Scholar 

  • Chen JJ, Shen CM, Ko YW (2013a) Analytical study of a microfluidic DNA amplification chip using water cooling effect. Biomed Microdevice 15(2):261–278

    Article  Google Scholar 

  • Chen X, Liu C, Xu Z et al (2013b) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103

    Article  Google Scholar 

  • Chen X, Li T, Zeng H et al (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140

    Article  Google Scholar 

  • Chen XY, Gao Q, Wang XL, Li XD (2016b) Experimental design and parameter optimization for laser three-dimensional (3-D) printing Lasers in engineering. Old City Publishing, Philadelphia, p 33

    Google Scholar 

  • Chen X, Li T, Shen J (2016c) CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int Polym Proc 31(2):233–238

    Article  Google Scholar 

  • Chen X, Shen J, Zhou M (2016d) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001

    Article  Google Scholar 

  • Chen X, Li T, Fu B (2016e) Surface roughness study on microchannels of CO2 laser fabricating PMMA-based microfluidic chip. Surf Rev Lett 24:1750017

    Article  Google Scholar 

  • Chen X, Li T, Shen J et al (2017a) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678

    Article  Google Scholar 

  • Chen X, Li T, Hu Z (2017b) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol 2017:1–8

    Google Scholar 

  • Cortes-Quiroz CA, Zangeneh M, Goto A (2009) On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid Nanofluid 7(1):29–43

    Article  Google Scholar 

  • Do MT, Li Q, Nguyen TTN et al (2014) High aspect ratio submicrometer two-dimensional structures fabricated by one-photon absorption direct laser writing. Microsyst Technol 20(10–11):2097–2102

    Article  Google Scholar 

  • Hansen CL, Quake SR, Berger JM (2014) Microfluidic protein crystallography techniques: U.S. Patent 8709153

  • Hsu YC, Chen TY (2007) Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices. Biomed Microdevice 9(4):513–522

    Article  Google Scholar 

  • Huang BL, Ren L, Zhao J et al (2013) Solvothermal synthesis of carboxyl functionalized mesoporous resins in microfluidic chip for water treatments. Adv Mater Res Trans Tech Publ 750:1300–1303

    Google Scholar 

  • Jeng JY, Wong YS, Ho CT (2001) Over-curing reduction of parts fabricated by the solid laser-diode plotter rapid prototyping system using the Taguchi method. Int J Adv Manuf Technol 18(9):683–691

    Article  Google Scholar 

  • Li H, Fan Y, Kodzius R et al (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379

    Article  Google Scholar 

  • Lin YC, Lee CC, Lin HS et al (2017) Fabrication of microfluidic structures in quartz via micro machining technologies. Microsyst Technol 23(6):1661–1669

    Article  Google Scholar 

  • Liu Z, Shum HC (2013) Fabrication of uniform multi-compartment particles using microfluidic electrospray technology for cell co-culture studies. Biomicrofluidics 7(4):044117

    Article  Google Scholar 

  • Prakash S, Kumar S (2015) Profile and depth prediction in single-pass and two-pass CO2 laser microchanneling processes. J Micromech Microeng 25(3):035010

    Article  MathSciNet  Google Scholar 

  • Qi H, Chen T, Yao L, Zuo T (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Lasers Eng 47(5):594–598

    Article  Google Scholar 

  • Rötting O, Röpke W, Becker H et al (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36

    Article  Google Scholar 

  • Sun Y, Satyanarayan MVD, Nguyen NT, Kwok YC (2008) Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sens Actuators B Chem 130(2):836–841

    Article  Google Scholar 

  • Syrcos GP (2003) Die casting process optimization using Taguchi methods. J Mater Process Technol 135(1):68–74

    Article  Google Scholar 

  • Ta BQ, Le Thanh H, Dong T et al (2015) Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J Micromech Microeng 25(9):094004

    Article  Google Scholar 

  • Yang CB, Deng CS, Chiang HL (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59(9):1103–1111

    Article  Google Scholar 

  • Yang W, Zhu T, Jin Y et al (2017) Facile fabrication of helical microfluidic channel based on rope coiling effect. Microsyst Technol 23(7):2957–2964

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51405214), The Key Project of Department of Education of Liaoning Province (JZL201715401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Chen, X., Yao, Z. et al. Fabricated polycarbonate microchannel with different films using CO2 laser beam of two-pass for microfluidic chip. Microsyst Technol 24, 2325–2331 (2018). https://doi.org/10.1007/s00542-017-3648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3648-6

Navigation