Advertisement

Microsystem Technologies

, Volume 24, Issue 5, pp 2389–2399 | Cite as

Towards macroporous phononic crystal based structures for FBAR applications. Theoretical investigation of technologically competitive solutions

  • Aleksandr Oseev
  • Nikolay V. Mukhin
  • Ralf Lucklum
  • Mikhail Zubtsov
  • Marc-Peter Schmidt
  • Dmitrii Redka
  • Andrey Kozyrev
  • Soeren Hirsch
Technical Paper
  • 165 Downloads

Abstract

The research work of current contribution is focused on the study of periodic macroporous arrangements, their designs scaling ability and performance depending on a possible technological imperfection. The studied in this work phononic structures are designed for a subsequent integration into the new class of integrated solutions on a basis of solid mounted film bulk acoustic resonators (SMR FBARs). Devices completed on a basis of developed solutions are intended for front-ends of telecommunication and radar systems applications. The main purpose of the research is an initial step towards enabling an efficient operation of integrated FBAR devices in a broad band or in several frequency bands using a multiple bandgap reflecting solid arrangements that ensure the isolation of acoustic energy within the piezoelectric layer for selected operation bands. The possibility of technological integration of periodic structures into the FBAR platform is a main critical point that limits the application of certain approach. Proposed in current work phononic crystal macroporous arrangements can be applied to improve an isolation of film bulk acoustic modes for SMR at specific frequencies; improve isolation and spatial separation of FBAR filter banks; enable an efficient operation of switchable and tunable SMR FBARs.

Notes

Acknowledgements

The research work of current contribution was supported by German Research Foundation under LU 605/16-1 and HI 1261/5-1 grants, by the Federal Ministry of Education and Research (BMBF) within MEMSonMID (03IPT518X) project and by the DAAD program “Mikhail Lomonosov” (Project no. 3.10001.2017/DAAD).

References

  1. Barillaro G, Nannini A, Piotto M (2002) Electrochemical etching in HF solution for silicon micromachining. Sens Actuators A 102:195–201CrossRefGoogle Scholar
  2. Benchabane S, Khelif A, Rauch J, Robert L, Laude V (2006) Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys Rev E 73:65601CrossRefGoogle Scholar
  3. Gevorgian S, Tagantsev AK, Vorobiev A (2013) FBARs utilizing induced piezoelectric effect. In: Tuneable film bulk acoustic wave resonators. Springer, New York, pp 117–131Google Scholar
  4. Gorisse M, Reinhardt A (2016) Laterally coupled BAW filter employing phononic crystalsGoogle Scholar
  5. Hashimoto K (2009) RF bulk acoustic wave filters for communications. Artech House, LondonGoogle Scholar
  6. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2011) Photonic crystals: molding the flow of light. Princeton University Press, PrincetonzbMATHGoogle Scholar
  7. Kalkur TS, Mansour A (eds) (2015) Tunable and switchable resonators and filters based on ferroelectric BST thin films for wireless communications. IEEE, New YorkGoogle Scholar
  8. Kokkonen K, Kaivola M, Benchabane S, Khelif A, Laude V (2007) Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry. Appl Phys Lett 91:83517CrossRefGoogle Scholar
  9. Kozyrev AB, Mikhaylov AK, Ptashnik SV, Zinoviev SV, Petrov PK, Alford NM, Wang T (2011) Electronically switchable bulk acoustic wave resonator based on paraelectric state ferroelectric films. Electron Lett 47:1326–1327CrossRefGoogle Scholar
  10. Kurowski A, Schultze JW, Lüth H, Schöning MJ (2002) Micro-and nanopatterning of sensor chips by means of macroporous silicon. Sens Actuators B Chem 83:123–128CrossRefGoogle Scholar
  11. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022CrossRefGoogle Scholar
  12. Lakin KM, Kline GR, McCarron KT (1993) High-Q microwave acoustic resonators and filters. IEEE Trans Microw Theory Tech 41:2139–2146CrossRefGoogle Scholar
  13. Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659CrossRefGoogle Scholar
  14. Lehmann V, Grüning U (1997) The limits of macropore array fabrication. Thin Solid Films 297:13–17CrossRefGoogle Scholar
  15. Lehmann V, Ronnebeck S (1999) The physics of macropore formation in low-doped p-type silicon. J Electrochem Soc 146:2968–2975CrossRefGoogle Scholar
  16. Lehmann V, Stengl R, Reisinger H, Detemple R, Theiss W (2001) Optical shortpass filters based on macroporous silicon. Appl Phys Lett 78:589–591CrossRefGoogle Scholar
  17. Li X, Abe T, Esashi M (2001) Deep reactive ion etching of Pyrex glass using SF 6 plasma. Sens Actuators A 87:139–145CrossRefGoogle Scholar
  18. Liang J, Chik H, Yin A, Xu J (2002) Two-dimensional lateral superlattices of nanostructures: nonlithographic formation by anodic membrane template. J Appl Phys 91:2544–2546CrossRefGoogle Scholar
  19. Matthias S, Müller F, Schilling J, Gösele U (2005) Pushing the limits of macroporous silicon etching. Appl Phys A Mater Sci Process 80:1391–1396CrossRefGoogle Scholar
  20. Park JH, Lee N, Lee J, Park JS, Park HD (2005) Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas. Microelectron Eng 82:119–128CrossRefGoogle Scholar
  21. Pennec Y, Vasseur JO, Djafari-Rouhani B, Dobrzyński L, Deymier PA (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65:229–291CrossRefGoogle Scholar
  22. Profunser DM, Muramoto E, Matsuda O, Wright OB, Lang U (2009) Dynamic visualization of surface acoustic waves on a two-dimensional phononic crystal. Phys Rev B 80:14301CrossRefGoogle Scholar
  23. Ronggui S, Righini GC (1991) Characterization of reactive ion etching of glass and its applications in integrated optics. J Vac Sci Technol A Vac Surf Films 9:2709–2712CrossRefGoogle Scholar
  24. Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382CrossRefGoogle Scholar
  25. Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71:R1–R22CrossRefGoogle Scholar
  26. Ueda M, Hara M, Taniguchi S, Yokoyama T, Nishihara T, Hashimoto K, Satoh Y (2008) Development of an X-band filter using air-gap-type film bulk acoustic resonators. Jpn J Appl Phys 47:4007CrossRefGoogle Scholar
  27. Vasseur JO, Djafari-Rouhani B, Dobrzynski L, Kushwaha MS, Halevi P (1994) Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems. J Phys Condens Matter 6:8759CrossRefGoogle Scholar
  28. Wehrspohn RB, Schilling J (2003) A model system for photonic crystals: macroporous silicon. Phys Status Solidi A 197:673–687CrossRefGoogle Scholar
  29. Wu T, Wu L, Huang Z (2005) Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. J Appl Phys 97:94916CrossRefGoogle Scholar
  30. Wu T, Wang W, Sun J, Hsu J, Chen Y (2009) Utilization of phononic-crystal reflective gratings in a layered surface acoustic wave device. Appl Phys Lett 94:101913CrossRefGoogle Scholar
  31. Ziaei-Moayyed M, Su MF, Reinke CM, El-Kady I, Olsson RH (eds) (2010) Silicon carbide phononic crystals for high fQ micromechanical resonators. IEEE, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Micro and Sensor Systems (IMOS)Otto-von-Guericke-UniversityMagdeburgGermany
  2. 2.St. Petersburg Electrotechnical University (“LETI”)St. PetersburgRussia
  3. 3.Department of EngineeringUniversity of Applied Sciences BrandenburgBrandenburgGermany

Personalised recommendations