Design and optimization of DETF resonator based on uncertainty analysis in a micro-accelerometer

Technical Paper
  • 41 Downloads

Abstract

Boundary structure and geometry parameters of the Double-Ended-Tuning Fork (DETF) resonator in a micro-accelerometer are investigated. The theoretical vibration model of a DETF resonator is established and verified by the simulation results obtained by finite element method. Uncertainty analysis incorporating the parametric uncertainty distribution is conducted by establishing the sample-based stochastic model to systematically investigate the influence of different geometry parameters of the DETF resonator on the natural frequency and the sensitivity of DETF resonator. The results reveal the different influences of geometry parameters, which can be used as reference for design and optimization of the DETF resonator of the micro-accelerometer.

Notes

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities under grants number YZ620, Postdoctoral Science Foundation of China under Grants number 2016M591049.

References

  1. Ashwin AS, Trey A, Roessig A (2002) Vacuum packaged surface micromachined resonant accelerometer. J Micro Electromech Syst 11:784–793. doi: 10.1109/JMEMS.2002.805207 CrossRefGoogle Scholar
  2. Beeby SP, Tudor MJ (1995) Modelling and optimization of micromachined silicon resonators. J Micromech Microeng 5:103–105CrossRefGoogle Scholar
  3. Beeby SP, Ensell G, White NM (2000) Microengineered silicon double-ended tuning-fork resonators. Eng Sci Educ J 9:265–271. doi: 10.1049/esej:20000606 CrossRefGoogle Scholar
  4. Chuang WC, Lee HL, Chang PZ et al (2010) Review on the modeling of electro-static MEMS. Sensors 10:6149–6171. doi: 10.3390/s100606149 CrossRefGoogle Scholar
  5. Eloy JC, Mounier E, Roussel P (2005) Status of the inertial MEMS-based sensors in the automotive. In: Advanced microsystems for automotive applications 2005. Springer, Berlin, Heidelberg, pp 43–48CrossRefGoogle Scholar
  6. Hassanpour PA, Cleghorn WL, Esmailzadeh E et al (2007) Vibration analysis of micromachined beam-type resonators. J Sound Vib 308:287–301. doi: 10.1016/j.jsv.2007.07.043 CrossRefGoogle Scholar
  7. He L, Xu YP, Palaniapan M (2008) A CMOS readout circuit for SOI resonant accelerometer with 4-μg bias stability and 20-μg/√HZ resolution. Solid State Circuits 43:1480–1490. doi: 10.1109/JSSC.2008.923616 CrossRefGoogle Scholar
  8. Hopkins R, Miola J, Setterlund R et al (2006) The silicon oscillating accelerometer: a high performance MEMS accelerometer for precision navigation and strategic guidance applications. Draper Technol Dig 10:4–13Google Scholar
  9. Kim HC, Seok S, Kim I, et al. (2005) Inertial-grade out-of-plane and in-plane differential resonant silicon accelerometers (DRXLS). In: Solid-state sensors, actuators and microsystems, transduer’05, vol 1, pp 172–175. doi: 10.1109/SENSOR.2005.1496386
  10. Lee JEY, Bahreyni B, Seshia AA (2008) An axial strain modulated double-ended tuning fork electrometer. Sens Actuators A 148:395–400. doi: 10.1016/j.sna.2008.09.010 CrossRefGoogle Scholar
  11. Li QF, Fan SC, Tang ZY, Xing WW (2012) Non-linear dynamics of an electrothermally excited resonant pressure sensor. Sens Actuators A 188:15–28. doi: 10.1016/j.sna.2012.01.006 Google Scholar
  12. Masako T (2007) An industrial and applied review of new MEMS devices features. Microelectron Eng 84:1341–1344. doi: 10.1016/j.mee.2007.01.232 CrossRefGoogle Scholar
  13. Mawardi A, Pitchumani R (2008) Numerical simulations of an optical fiber drawing process under uncertainty. Lightwave Technol 26:580–587CrossRefGoogle Scholar
  14. Myers MR (1989) A model for unsteady analysis of preform drawing. AIChE J 35:592–602. doi: 10.1002/aic.690350409 CrossRefGoogle Scholar
  15. Padmanabhan SK, Pitchumani R (1999) Stochastic modeling of nonisothermal flow during resin transfer molding. Int J Heat Mass Transfer 42:3057–3070. doi: 10.1016/S0017-9310(98)00377-9 CrossRefMATHGoogle Scholar
  16. Peng H, Zhang YW, Pai PF (2013) Uncertainty analysis of solid–liquid–vapor phase change of a metal particle subject to nanosecond laser heating. Manuf Sci Eng 135:021009. doi: 10.1115/1.4023714 CrossRefGoogle Scholar
  17. Seok S, Chun K (2006) Inertial-grade in-plane resonant silicon accelerometer. Electron Lett 42:1092–1093CrossRefGoogle Scholar
  18. Shi HC, Fan SC, Zhang YW et al (2014) Design and optimization based on uncertainty analysis in electro-thermal excited MEMS resonant sensor. Microsyst Technol 21:1–15. doi: 10.1007/s00542-014-2109-8 Google Scholar
  19. Su SXP, Yang HS, Agogino AM (2006) A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology. IEEE Sens J 5:1214–1223. doi: 10.1109/JSEN.2005.857876 CrossRefGoogle Scholar
  20. Yu JC, Lan CB (2001) System modeling of microaccelerometer using piezo-electric thin film. Sens Actuators A 88:178–186. doi: 10.1109/MFI.1999.815972 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  2. 2.School of Instrument Science and Opto-electronics EngineeringBeihang UniversityBeijingChina
  3. 3.North Automatic Control Technology Research InstituteTaiyuanChina

Personalised recommendations