Advertisement

Journal of Anesthesia

, Volume 32, Issue 2, pp 244–249 | Cite as

Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice

  • Masakazu Kotoda
  • Tadahiko Ishiyama
  • Kazuha Mitsui
  • Sohei Hishiyama
  • Takashi Matsukawa
Original Article

Abstract

Purpose

Nicorandil has dual properties and acts as a nitric oxide donor and an ATP-sensitive potassium (KATP) channel opener. Considering its pharmacological profile, nicorandil might exert protective effects on the brain as well as on the heart. The purpose of this study was to directly evaluate the effect of nicorandil on cerebral blood flow (CBF) in mice using a transcranial Doppler method.

Methods

Under general anesthesia, the nicorandil groups received a single-bolus intraperitoneal injection of the respective doses of nicorandil (1, 5, or 10 mg/kg), while the control group received vehicle only. CBF was measured using a transcranial Doppler flowmeter. NG-nitro-l-arginine methyl ester and glibenclamide were used to elucidate the underlying mechanisms.

Results

A single-bolus injection of 1 mg/kg of nicorandil increased the CBF (11.6 ± 3.6 vs. 0.5 ± 0.7%, p < 0.001) without affecting the heart rate and blood pressure. On the contrary, 5 and 10 mg/kg of nicorandil significantly decreased the cerebral blood flow by decreasing the mean blood pressure below the cerebral autoregulation range. The positive effect of 1 mg/kg of nicorandil on the cerebral blood flow was inhibited by co-administration of either NG-nitro-l-arginine methyl ester or glibenclamide.

Conclusions

A clinical dose of nicorandil increases CBF without affecting systemic hemodynamics. The positive effect of nicorandil on CBF is most likely caused via both the nitric oxide pathway and KATP channel opening.

Keywords

Cerebral blood flow KATP channel Neuroprotection Nicorandil Nitric oxide 

Notes

Funding

This work was supported by the Japan Society for Promotion of Science (JSPS KAKENHI Grant number 17K11044).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

540_2018_2471_MOESM1_ESM.pdf (131 kb)
Supplementary material 1 (PDF 131 kb)

References

  1. 1.
    Taira N. Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol. 1989;63:18J–24J.CrossRefPubMedGoogle Scholar
  2. 2.
    IONA Study Group. Impact of nicorandil in angina: subgroup analyses. Heart. 2004;90:1427–30.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Matsuo H, Watanabe S, Segawa T, Yasuda S, Hirose T, Iwama M, Tanaka S, Yamaki T, Matsuno Y, Tomita M, Minatoguchi S, Fujiwara H. Evidence of pharmacologic preconditioning during PTCA by intravenous pretreatment with ATP-sensitive K+ channel opener nicorandil. Eur Heart J. 2003;24:1296–303.CrossRefPubMedGoogle Scholar
  4. 4.
    Tarkin JM, Kaski JC. Vasodilator therapy: nitrates and nicorandil. Cardiovasc Drugs Ther. 2016;30:367–78.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Horinaka S. Use of nicorandil in cardiovascular disease and its optimization. Drugs. 2011;71:1105–19.CrossRefPubMedGoogle Scholar
  6. 6.
    Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, Wood TL, Willing LB, Stannard B, Hernandez-Sanchez C, Mobbs C, Virsolvy A, LeRoith D. Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Mol Cell Neurosci. 2004;25:585–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Sun HS, Feng ZP, Miki T, Seino S, French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol. 2006;95:2590–601.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakagawa I, Alessandri B, Heimann A, Kempski O. MitoKATP-channel opener protects against neuronal death in rat venous ischemia. Neurosurgery. 2005;57:334–40 (discussion 334–340).CrossRefPubMedGoogle Scholar
  9. 9.
    Akai K, Wang Y, Sato K, Sekiguchi N, Sugimura A, Kumagai T, Komaru T, Kanatsuka H, Shirato K. Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J Cardiovasc Pharmacol. 1995;26:541–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Ishiyama T, Dohi S, Iida H, Akamatsu S, Ohta S, Shimonaka H. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments. Stroke. 1994;25:1644–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Iwata K, Iida H, Iida M, Takenaka M, Tanabe K, Fukuoka N, Uchida M. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats. J Neurosurg Anesthesiol. 2013;25:392–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Inoue S, Kawaguchi M, Kurehara K, Sakamoto T, Kitaguchi K, Furuya H. Effect of mild hypothermia on nicorandil-induced vasodilation of pial arterioles in cats. Crit Care Med. 2001;29:2162–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Kobayashi S, Yamaguchi S, Okada K, Suyama N, Bokura K, Murao M. Effects of nicorandil on regional cerebral blood flow in patients with chronic cerebral infarction. Preliminary communication. Arzneimittelforschung. 1992;42:1086–9.PubMedGoogle Scholar
  14. 14.
    Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu D, Fan C, Zhang W, Wen Z, Hu L, Yang L, Feng Y, Yin KJ, Mo X. Neuroprotective effect of nicorandil through inhibition of apoptosis by the PI3K/Akt1 pathway in a mouse model of deep hypothermic low flow. J Neurol Sci. 2015;357:119–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Gantenbein M, Attolini L, Bruguerolle B. Kinetics of bupivacaine after nicorandil treatment in mice. J Pharm Pharmacol. 1996;48:749–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci. 2014;6:233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem. 2012;120:147–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Shafaroodi H, Asadi S, Sadeghipour H, Ghasemi M, Ebrahimi F, Tavakoli S, Hajrasouliha AR, Dehpour AR. Role of ATP-sensitive potassium channels in the biphasic effects of morphine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Res. 2007;75:63–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Eguchi Y, Takahari Y, Higashijima N, Ishizuka N, Tamura N, Kawamura Y, Ishida H. Nicorandil attenuates FeCl(3)-induced thrombus formation through the inhibition of reactive oxygen species production. Circ J. 2009;73:554–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Hedna VS, Ansari S, Shahjouei S, Cai PY, Ahmad AS, Mocco J, Qureshi AI. Validity of laser Doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J Vasc Interv Neurol. 2015;8:74–82.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Phillips SJ, Whisnant JP. Hypertension and the brain. The National High Blood Pressure Education Program. Arch Intern Med. 1992;152:938–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol. 2002;283:H315–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Brodmann M, Lischnig U, Lueger A, Stark G, Pilger E. The effect of the K+ agonist nicorandil on peripheral vascular resistance. Int J Cardiol. 2006;111:49–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Wolf DL, Ferry JJ, Hearron AE, Froeschke MO, Luderer JR. The haemodynamic effects and pharmacokinetics of intravenous nicorandil in healthy volunteers. Eur J Clin Pharmacol. 1993;44:27–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Waldman SA, Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987;39:163–96.PubMedGoogle Scholar
  27. 27.
    Nielsen-Kudsk JE, Boesgaard S, Aldershvile J. K+ channel opening: a new drug principle in cardiovascular medicine. Heart. 1996;76:109–16.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horinaka S, Kobayashi N, Yagi H, Mori Y, Matsuoka H. Nicorandil but not ISDN upregulates endothelial nitric oxide synthase expression, preventing left ventricular remodeling and degradation of cardiac function in Dahl salt-sensitive hypertensive rats with congestive heart failure. J Cardiovasc Pharmacol. 2006;47:629–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaneko T, Saito Y, Hikawa Y, Yasuda K, Makita K. Dose-dependent prophylactic effect of nicorandil, an ATP-sensitive potassium channel opener, on intra-operative myocardial ischaemia in patients undergoing major abdominal surgery. Br J Anaesth. 2001;86:332–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab. 1994;14:217–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33:2297–303.CrossRefPubMedGoogle Scholar
  33. 33.
    Greene NH, Lee LA. Modern and evolving understanding of cerebral perfusion and autoregulation. Adv Anesth. 2012;30:97–129.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 2003;81:133–76.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology, Faculty of MedicineUniversity of YamanashiChuoJapan
  2. 2.Surgical Center, University of Yamanashi HospitalUniversity of YamanashiChuoJapan

Personalised recommendations