Journal of Anesthesia

, Volume 32, Issue 2, pp 174–181 | Cite as

Genetic and functional analysis of the RYR1 mutation p.Thr84Met revealed a susceptibility to malignant hyperthermia

  • Takashi Kondo
  • Toshimichi Yasuda
  • Keiko Mukaida
  • Sachiko Otsuki
  • Rieko Kanzaki
  • Hirotsugu Miyoshi
  • Hiroshi Hamada
  • Ichizo Nishino
  • Masashi Kawamoto
Original Article



The aim of this study was to analyze the genetic and functional role of a novel RYR1 variant c.251 C > T (p.Thr84Met) identified in a patient with muscle weakness demonstrating MH susceptibility.


DNA testing of family members was conducted for assessment of pathogenicity of the genetic variant. For functional analysis, Ca2+ measurement using patient-derived myotubes and p.Thr84Met RYR1-transfected human embryonic kidney (HEK)-293 cells was performed to evaluate reactivity to RYR1 activators. The half-maximal effective concentration (EC50) values of two RYR1 activators, caffeine and 4-chloro-m-cresol (4CmC), were calculated from the acquired dose–response curves. The EC50 was compared between two groups: for myotubes, the control group and the patient, and for HEK-293 cells, WT and p.Thr84Met.


Dose–response curves for caffeine and 4CmC were shifted to the left in both myotubes and HEK-293 cells compared to controls. The 50% effective concentration values for caffeine and 4CmC were significantly lower in both myotubes and HEK-293 cells compared to controls (P < 0.001 for all comparisons).


Our results of functional testing indicated RYR1 hypersensitivity to caffeine and 4CmC. We conclude that the genetic variant was associated with MH susceptibility.


Malignant hyperthermia Ryanodine receptor Mutation Calcium release 



We thank Professor David H. MacLennan for the generous gift of RYR1/pcDNA.

Compliance with ethical standards

Conflict of interest

This study was supported in part by a Grant-in-Aid (Grant number 16K20098) for Scientific Research from the Japan Society for the Promotion of Science, Japan.


  1. 1.
    Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Avila G. Intracellular Ca2+ dynamics in malignant hyperthermia and central core disease: established concepts, new cellular mechanisms involved. Cell Calcium. 2005;37:121–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Snoeck M, van Engelen BG, Küsters B, Lammens M, Meijer R, Molenaar JP, Raaphorst J, Verschuuren-Bemelmans CC, Straathof CS, Sie LT, de Coo IF, van der Pol WL, de Visser M, Scheffer H, Treves S, Jungbluth H, Voermans NC, Kamsteeg EJ. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol. 2015;22:1094–112.CrossRefPubMedGoogle Scholar
  4. 4.
    Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, Protasi F, Dirksen R, Hamilton SL. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell. 2008;133:53–65.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oku S, Mukaida K, Nosaka S, Sai Y, Maehara Y, Yuge O. Comparison of the in vitro caffeine-halothane contracture test with the Ca-induced Ca release rate test in patients suspected of having malignant hyperthermia susceptibility. J Anesth. 2000;14:6–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Kobayashi M, Mukaida K, Migita T, Hamada H, Kawamoto M, Yuge O. Analysis of human cultured myotubes responses mediated by ryanodine receptor 1. Anaesth Intensive Care. 2011;39:252–61.PubMedGoogle Scholar
  7. 7.
    Hopkins PM, Rüffert H, Snoeck MM, Girard T, Glahn KP, Ellis FR, Müller CR, Urwyler A, European Malignant Hyperthermia Group. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. Br J Anaesth. 2015;115:531–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Miyoshi H, Yasuda T, Otsuki S, Kondo T, Haraki T, Mukaida K, Nakamura R, Hamada H, Kawamoto M. Several ryanodine receptor type 1 gene mutations of p.Arg2508 are potential sources of malignant hyperthermia. Anesth Analg. 2015;121:994–1000.CrossRefPubMedGoogle Scholar
  9. 9.
    Haraki T, Yasuda T, Mukaida K, Migita T, Hamada H, Kawamoto M. Mutated p. 4894 RyR1 function related to malignant hyperthermia and congenital neuromuscular disease with uniform type 1 fiber (CNMDU1). Anesth Analg. 2011;113:1461–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Migita T, Mukaida K, Hamada H, Yasuda T, Haraki T, Nishino I, Murakami N, Kawamoto M. Functional analysis of ryanodine receptor type 1 p.R2508C mutation in exon 47. J Anesth. 2009;23:341–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. Mutation Taster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013 (Chapter 7: Unit 7.20).Google Scholar
  13. 13.
    Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.CrossRefPubMedGoogle Scholar
  14. 14.
    North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG, International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116.CrossRefPubMedGoogle Scholar
  15. 15.
    Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN, Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24:289–311.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat. 2006;27:977–89.CrossRefPubMedGoogle Scholar
  17. 17.
    Sewry CA, Müller C, Davis M, Dwyer JS, Dove J, Evans G, Schröder R, Fürst D, Helliwell T, Laing N, Quinlivan RC. The spectrum of pathology in central core disease. Neuromuscul Disord. 2002;12:930–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol. 2017;43:5–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Riazi S, Kraeva N, Muldoon SM, Dowling J, Ho C, Petre MA, Parness J, Dirksen RT, Rosenberg H. Malignant hyperthermia and the clinical significance of type-1 ryanodine receptor gene (RYR1) variants: proceedings of the 2013 MHAUS Scientific Conference. Can J Anaesth. 2014;61:1040–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wehner M, Rueffert H, Koenig F, Meinecke CD, Olthoff D. The Ile2453Thr mutation in the ryanodine receptor gene 1 is associated with facilitated calcium release from sarcoplasmic reticulum by 4-chloro-m-cresol in human myotubes. Cell Calcium. 2003;34:163–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Treves S, Jungbluth H, Muntoni F, Zorzato F. Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Curr Opin Pharmacol. 2008;8:319–26.CrossRefPubMedGoogle Scholar
  22. 22.
    Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci. 2014;6:339.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dirksen RT, Avila G. Altered ryanodine receptor function in central core disease: leaky or uncoupled Ca(2+) release channels? Trends Cardiovasc Med. 2002;12:189–97.CrossRefPubMedGoogle Scholar
  24. 24.
    Treves S, Anderson AA, Ducreux S, Divet A, Bleunven C, Grasso C, Paesante S, Zorzato F. Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders. Neuromuscul Disord. 2005;15:577–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Ibarra MCA, Wu S, Murayama K, Minami N, Ichihara Y, Kikuchi H, Noguchi S, Hayashi YK, Ochiai R, Nishino I. Malignant hyperthermia in Japan: mutation screening of the entire ryanodine receptor type 1 gene coding region by direct sequencing. Anesthesiology. 2006;104:1146–54.CrossRefGoogle Scholar
  26. 26.
    Sambuughin N, Holley H, Muldoon S, Brandom BW, de Bantel AM, Tobin JR, Nelson TE, Goldfarb LG. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the North American population. Anesthesiology. 2005;102:515–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Davis M, Brown R, Dickson A, Horton H, James D, Laing N, Marston R, Norgate M, Perlman D, Pollock N, Stowell K. Malignant hyperthermia associated with exercise-induced rhabdomyolysis or congenital abnormalities and a novel RYR1 mutation in New Zealand and Australian pedigrees. Br J Anaesth. 2002;88:508–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Robinson RL, Brooks C, Brown SL, Ellis FR, Halsall PJ, Quinnell RJ, Shaw MA, Hopkins PM. RYR1 mutations causing central core disease are associated with more severe malignant hyperthermia in vitro contracture test phenotypes. Hum Mutat. 2002;20:88–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Tung CC, Lobo PA, Kimlicka L, Van Petegem F. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature. 2010;468:585–8.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical CareHiroshima University HospitalHiroshimaJapan
  2. 2.Department of Anesthesiology and Critical Care, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Department of AnesthesiologyHiroshima Prefectural Rehabilitation CenterHiroshimaJapan
  4. 4.Department of Neuromuscular ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan

Personalised recommendations