Advertisement

Journal of Anesthesia

, Volume 32, Issue 2, pp 288–292 | Cite as

Changes in tissue and cerebral oxygenation following spinal anesthesia in infants: a prospective study

  • Alexander B. Froyshteter
  • Dmitry Tumin
  • Emmett E. Whitaker
  • David P. Martin
  • Mumin Hakim
  • Hina Walia
  • Tarun Bhalla
  • Joseph D. Tobias
Clinical Report

Abstract

Use of spinal anesthesia (SA) in children may address concerns about potential neurocognitive effects of general anesthesia. We used near-infrared spectroscopy (NIRS) to assess the effects of SA on cerebral and tissue oxygenation in 19 patients aged 7 ± 3 months. Prior to SA placement, NIRS monitors were placed on the forehead (cerebral) and the thigh (tissue). Intraoperative cerebral and tissue saturation were 73 ± 7 and 80 ± 11%, respectively, before SA placement. NIRS measurements were monitored every minute for 30 min after SA placement and modeled using mixed-effects linear regression. Regression estimates showed that cerebral saturation remained stable from 67% [95% confidence interval (CI) 63, 71%] after SA placement to 68% (95% CI 65, 72%) at the conclusion of monitoring. After SA placement, tissue saturation was elevated compared to baseline values; but further change [from 91% (95% CI 89, 93%) to 93% (95% CI 91, 95%) at the end of monitoring] was clinically non-significant. All patients breathed spontaneously on room air without changes in oxygen saturation. Blood pressure and heart rate decreased after SA placement, but no changes in hemodynamic parameters required treatment. These data provide further evidence of the neutral effect of SA on cerebral oxygenation 30 min after block placement.

Keywords

Non-invasive monitors Neuraxial anesthesia Neurodevelopment Near-infrared spectroscopy 

Notes

Funding

The study was funded by departmental resources.

Compliance with ethical standards

Ethics

Institutional Review Board approval at Nationwide Children’s Hospital (Columbus, OH, USA) number IRB16-00465 obtained on June 17, 2016.

Conflict of interest

The authors have no conflict of interest to report.

Supplementary material

540_2017_2446_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1064 kb)

References

  1. 1.
    Davidson AJ. Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Pediatr Anesth. 2011;21:716–21.CrossRefGoogle Scholar
  2. 2.
    McGowan FX Jr, Davis PJ. Anesthetic-related neurotoxicity in the developing infant: of mice, rats, monkeys and possibly, humans. Anesth Analg. 2008;106:1599–602.CrossRefPubMedGoogle Scholar
  3. 3.
    Blaylock M, Engelhardt T, Bissonnette B. Fundamentals of neuronal apoptosis relevant to pediatric anesthesia. Pediatr Anesth. 2010;20:383–95.CrossRefGoogle Scholar
  4. 4.
    Davidson AJ, Morton NS, Arnup SJ, de Graaff JC, Disma N, Withington DE, Frawley G, Hunt RW, Hardy P, Khotcholava M, von Ungern Sternberg BS, Wilton N, Tuo P, SalvoI I, Ormond G, Stargatt R, Locatelli BG, McCann ME, The GAS Consortium. Apnea after awake-regional and general anesthesia in infants: The General Anesthesia compared to Spinal anesthesia (GAS) study: comparing apnea and neurodevelopmental outcomes, a randomized controlled trial. Anesthesiology. 2015;123:38–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dohi S, Naito H, Takahashi T. Age-related changes in blood pressure and duration of motor blockade in spinal anesthesia. Anesthesiology. 1979;50:319–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Finkel JC, Boltz MG, Conran AM. Hemodynamic changes during high spinal anesthesia in children undergoing open heart surgery. Paediatr Anaesth. 2003;13:48–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Kachko L, Birk E, Simhi E, Tzeitlin E, Freud E, Katz J. Spinal anesthesia for noncardiac surgery in infants with congenital heart diseases. Paediatr Anaesth. 2012;22:647–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Payen D, Ecoffey C, Carli P, Dubousset AM. Pulsed Doppler ascending aortic, carotid, brachial, and femoral artery blood flows during caudal anesthesia in infants. Anesthesiology. 1987;67:681–5.CrossRefPubMedGoogle Scholar
  9. 9.
    McCann ME, Withington DE, Arnup SJ, Davidson AJ, Disma N, Frawley G, Morton NS, Bell G, Hunt RW, Bellinger DC, Polaner DM, Leo A, Absalom AR, von Ungern-Sternberg BS, Izzo F, Szmuk P, Young V, Soriano SG, de Graaff JC; GAS Consortium. Differences in blood pressure in infants after general anesthesia compared to awake regional anesthesia (GAS study−a prospective randomized trial). Anesth Analg. 2017;125(3):837–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Bonnet MP, Larousse E, Asehnoune K, Benhamou D. Spinal anesthesia with bupivacaine decreases cerebral blood flow in former preterm infants. Anesth Analg. 2004;98:1280–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Tobias JD. Cerebral oxygenation monitoring: near infrared spectroscopy. Expert Rev Med Devices. 2006;3:235–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Neshat Vahid S, Panisello JM. The state of affairs of neurologic monitoring by near-infrared spectroscopy in pediatric cardiac critical care. Curr Opin Pediatr. 2014;26:299–303.CrossRefPubMedGoogle Scholar
  14. 14.
    Chakravarti SB, Mittnacht AJ, Katz JC, Nguyen K, Joashi U, Srivastava S. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23:663–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Sood ED, Benzaquen JS, Davies RR, Woodford E, Pizarro C. Predictive value of perioperative near-infrared spectroscopy for neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2013;145:438–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Hoffman GM, Brosig CL, Bear LM, Tweddell JS, Mussatto KA. Effect of intercurrent operation and cerebral oxygenation on developmental trajectory in congenital heart disease. Ann Thorac Surg. 2016;101:708–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Kondo Y, Sakatani K, Hirose N, Maeda T, Kato J, Ogawa S, Katayama Y. Effect of spinal anesthesia for elective cesarean section on cerebral blood oxygenation changes: comparison of hyperbaric and isobaric bupivacaine. Adv Exp Med Biol. 2013;765:109–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirose N, Kondo Y, Maeda T, Suzuki T, Yoshino A, Katayama Y. Oxygen Supplementation is effective in attenuating maternal cerebral blood deoxygenation after spinal anesthesia for cesarean section. Adv Exp Med Biol. 2016;876:471–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Sola C, Hertz L, Bringuier S, De La Arena P, Macq C, Deziel-Malouin S, Raux O, Dadure C. Spinal anaesthesia in neonates and infants: what about the cerebral saturation? Br J Anaesth 2017;119:964–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Koch HW, Hansen TG. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: a 24-h observational study. Paediatr Anaesth. 2016;26:190–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Olbrecht VA, Skowno J, Marchesini V, Ding L, Jiang Y, Ward CG, Yu G, Liu H, Schurink B, Vutskits L, de Graaff JC, McGowan FX Jr, von Ungern-Sternberg BS, Kurth CD, Davidson A. An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology 2018;128:85–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Razlevice I, Rugyte DC, Strumylaite L, Macas A. Assessment of risk factors for cerebral oxygen desaturation during neonatal and infant general anesthesia: an observational, prospective study. BMC Anesthesiol. 2016;16:107.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Conforti A, Giliberti P, Mondi V, Valfré L, Sgro S, Picardo S, Bagolan P, Dotta A. Near infrared spectroscopy: experience on esophageal atresia infants. J Pediatr Surg. 2014;49:1064–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Whitaker EE, Wiemann BZ, DaJusta DG, Alpert SA, Ching CB, McLeod DJ, Tobias JD, Jayanthi VR. Spinal anesthesia for pediatric urological surgery: reducing the theoretic neurotoxic effects of general anesthesia. J Pediatr Urol. 2017;13:396–400.CrossRefPubMedGoogle Scholar
  25. 25.
    Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103(Suppl 1):i3–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Bettesworth J, Bhalla T, Barry N, Tobias JD. Changes in tissue oxygenation following caudal epidural blockade in infants and children. Paediatr Anaesth. 2012;22:1068–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Kabon B, Fleischmann E, Treschan T, Taguchi A, Kapral S, Kurz A. Thoracic epidural anesthesia increases tissue oxygenation during major abdominal surgery. Anesth Analg. 2003;97:1812–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Tighe PJ, Elliott CE, Lucas SD, Boezaart AP. Noninvasive tissue oxygen saturation determined by near-infrared spectroscopy following peripheral nerve block. Acta Anaesthesiol Scand. 2011;55:1239–46.CrossRefPubMedGoogle Scholar
  29. 29.
    Tobias JD, Hoernschemeyer DG. Near-infrared spectroscopy identifies compartment syndrome in an infant. J Pediatr Orthop. 2007;27:311–3.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  • Alexander B. Froyshteter
    • 1
  • Dmitry Tumin
    • 1
    • 3
  • Emmett E. Whitaker
    • 1
    • 2
  • David P. Martin
    • 1
    • 2
  • Mumin Hakim
    • 1
  • Hina Walia
    • 1
  • Tarun Bhalla
    • 1
    • 2
  • Joseph D. Tobias
    • 1
    • 2
  1. 1.Department of Anesthesiology and Pain MedicineNationwide Children’s HospitalColumbusUSA
  2. 2.Department of Anesthesiology and Pain MedicineThe Ohio State University College of MedicineColumbusUSA
  3. 3.Department of PediatricsThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations