Skip to main content

Advertisement

Log in

Predictors of severe postoperative hyperglycemia after cardiac surgery in infants: a single-center, retrospective, observational study

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Hyperglycemia is a common issue in infants after cardiac surgery for congenital heart disease. Poor glycemic control is suspected to be associated with adverse postoperative outcomes. This study was performed to investigate clinical factors contributing to hyperglycemia in the perioperative period in infats.

Methods

A total of 69 infants (aged 1–12 months) who were admitted to Yokohama City University Hospital Intensive Care Unit (ICU) after surgical repair of congenital heart diseases with cardiopulmonary bypass (CPB) were retrospectively analysed. Hyperglycemia was defined as blood glucose ≥ 250 mg/dL on ICU admission. Clinical background, operative factors, and postoperative factors were compared between the hyperglycemic and non-hyperglycemic groups. Additionally, multivariate analysis was performed to identify factors contributing to hyperglycemia.

Results

Nineteen (27.5%) and 50 (72.5%) infants were classified into the hyperglycemic and non-hyperglycemic groups, respectively. Hyperglycemic infants were significantly younger, shorter, and weighed less, with a higher rate of chromosomal abnormalities. Intraoperatively, they also experienced longer CPB and surgery times and had higher peak lactate levels and higher inotropic requirements. Hyperglycemia was related to longer mechanical ventilation and longer ICU stays. Multivariate analysis detected intraoperative hyperglycemia, longer CPB time, younger age and chromosomal abnormality as significant factors.

Conclusion

Adding to hyperglycemia during the operation, longer CPB time younger age and chromosomal abnormality were identified as predictors of high blood glucose levels at ICU admission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rossano JW, Taylor MD, Smith EOB, Fraser CD, McKenzie ED, Price JF, Dickerson HA, Nelson DP, Mott AR. Glycemic profile in infants who have undergone the arterial switch operation: hyperglycemia is not associated with adverse events. J Thorac Cardiovasc Surg. 2008;135(4):739–45.

    Article  PubMed  Google Scholar 

  2. Polito A, Thiagarajan RR, Laussen PC, Gauvreau K, Agus MS, Scheurer MA, Pigula FA, Costello JM. Association between intraoperative and early postoperative glucose levels and adverse outcomes after complex congenital heart surgery. Circulation. 2008;118(22):2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ulate KP, Lima Falcao GC, Bielefeld MR, Morales JM, Rotta AT. Strict glycemic targets need not be so strict: a more permissive glycemic range for critically ill children. Pediatrics [Internet]. 2008;122(4):e898–904.

    Article  Google Scholar 

  4. Kandil SB, Miksa M, Faustino EVS. Control of serum glucose concentration in critical illness. Curr Opin Pediatr. 2013;25(3):297–303.

    Article  PubMed  Google Scholar 

  5. Agus MSD, Steil GM, Wypij D, Costello JM, Laussen PC, Langer M, Alexander JL, Scoppettuolo LA, Pigula FA, Charpie JR, Ohye RG, Gaies MG. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2014;367(13):1208–19.

    Article  Google Scholar 

  6. Macrae D, Grieve R, Allen E, Sadique Z, Morris K, Pappachan J, Parslow R, Tasker RC, Elbourne D. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  7. Agus MSD, Asaro LA, Steil GM, Alexander JL, Silverman M, Wypij D, Gaies MG. Tight glycemic control after pediatric cardiac surgery in high-risk patient populations: a secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Circulation. 2014;129:2297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jenkins KJ, Gauvreau K. Center-specific differences in mortality: preliminary analyses using the risk adjustment in congenital heart surgery (RACHS-1) method. J Thorac Cardiovasc Surg. 2002;124(1):97–104.

    Article  PubMed  Google Scholar 

  9. Wernovsky G, Wypij D, Jonas RA, Mayer JE, Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castañeda AR, Newburger JW, Wessel DL. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92(8):2226–35.

    Article  CAS  PubMed  Google Scholar 

  10. Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated pediatric risk of mortality score. Crit Care Med. 1996;24(5):743–52.

    Article  CAS  PubMed  Google Scholar 

  11. Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, Gottesman R, Joffe A, Pfenninger J, Hubert P, Lacroix J, Leclerc F. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet. 2003;362(9379):192–7.

    Article  PubMed  Google Scholar 

  12. Scohy TV, Golab HD, Egal M, Takkenberg JJM, Bogers AJJC. Intraoperative glycemic control without insulin infusion during pediatric cardiac surgery for congenital heart disease. Pediatr Anesth. 2011;21:872–9.

    Article  Google Scholar 

  13. Moga M-A, Manlhiot C, Marwali EM, McCrindle BW, Van Arsdell GS, Schwartz SM. Hyperglycemia after pediatric cardiac surgery: impact of age and residual lesions. Crit Care Med. 2011;39(2):266–72.

    Article  CAS  PubMed  Google Scholar 

  14. Beardsall K, Diderholm BMS, Dunger DB. Insulin and carbohydrate metabolism. Best Pract Res Clin Endocrinol Metab. 2008;22(1):41–55.

    Article  CAS  PubMed  Google Scholar 

  15. Ogilvy-Stuart AL, Beardsall K. Management of hyperglycaemia in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2010;95(2 t):F126–31.

    Article  CAS  PubMed  Google Scholar 

  16. Davidson J, Tong S, Hancock H, Hauck A, Da Cruz E, Kaufman J. Prospective validation of the vasoactive-inotropic score and correlation to short-term outcomes in neonates and infants after cardiothoracic surgery. Intensive Care Med. 2012;38(7):1184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Preissig CM, Rigby MR, Maher KO. Glycemic control for postoperative pediatric cardiac patients. Pediatr Cardiol. 2009;30(8):1098–104.

    Article  PubMed  Google Scholar 

  18. Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, Radermacher P, Calzia E. Glucose metabolism and catecholamines. Crit Care Med. 2007;35(9 Suppl):S508–18.

    Article  CAS  PubMed  Google Scholar 

  19. Floh AA, Manlhiot C, Redington AN, McCrindle BW, Clarizia NA, Caldarone CA, Schwartz SM. Insulin resistance and inflammation are a cause of hyperglycemia after pediatric cardiopulmonary bypass surgery. J Thorac Cardiovasc Surg. 2015;150(3):498–504 (e1).

    Article  CAS  PubMed  Google Scholar 

  20. Arkader R, Malbouisson LM, Del Negro GMB, Yamamoto L, Okay TS. Factors associated with hyperglycemia and low insulin levels in children undergoing cardiac surgery with cardiopulmonary bypass who received a single high dose of methylprednisolone. Clinics (Sao Paulo). 2013;68(01):85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Correia GDS, Wooi Ng K, Wijeyesekera A, Gala-Peralta S, Williams R, MacCarthy-Morrogh S, Jiménez B, Inwald D, Macrae D, Frost G, Holmes E, Pathan N. Metabolic profiling of children undergoing surgery for congenital heart disease. Crit Care Med. 2015;43:1467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molina Hazan V, Gonen Y, Vardi A, Keidan I, Mishali D, Rubinshtein M, Yakov Y, Paret G. Blood lactate levels differ significantly between surviving and nonsurviving patients within the same risk-adjusted classification for congenital heart surgery (RACHS-1) group after pediatric cardiac surgery. Pediatr Cardiol. 2010;31(7):952–60.

    Article  PubMed  Google Scholar 

  23. Alves RL, Aragão E, Silva AL, Kraychete NCDC, Campos GO, Martins MDJ, Módolo NSP. Intraoperative lactate levels and postoperative complications of pediatric cardiac surgery. Paediatr Anaesth. 2012;22(8):812–7.

    Article  PubMed  Google Scholar 

  24. Finney SJ, Zekveld C, Evans TW. Glucose control and mortality in critically Ill patients. JAMA. 2003;290(15):2041–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was carried out without funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuhiro Yamamoto.

Ethics declarations

Ethical standards

This study was approved by Yokohama City University Ethics Committee (Number: B160101004).

Conflict of interest

No conflicts of interest declared.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, N., Irie, T., Takaki, S. et al. Predictors of severe postoperative hyperglycemia after cardiac surgery in infants: a single-center, retrospective, observational study. J Anesth 32, 160–166 (2018). https://doi.org/10.1007/s00540-017-2444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-017-2444-x

Keywords

Navigation