The influence of variations in crustal composition and lithospheric strength on the evolution of deformation processes in the southern Central Andes: insights from geodynamic models

Abstract

Deformation in the orogen-foreland system of the southern Central Andes between 33° and 36° S varies in style, locus, and amount of shortening. The controls that determine these spatially variable characteristics have largely remained unknown, yet both the subduction of the oceanic Nazca plate and the strength of the South American plate have been invoked to play a major role. While the parameters governing the subduction processes are similar between 33° and 36° S, the lithospheric strength of the upper plate is spatially variable due to structures inherited from past geodynamic regimes and associated compositional differences in the South American plate. Regional Mesozoic crustal horizontal extension generated a < 40-km-thick crust with a more mafic composition in the lower crust south of 35°S; north of this latitude, however, a more felsic lower crust is inferred from geophysical data. To assess the influence of different structural and compositional heterogeneities on the style of deformation in the southern Central Andes, we developed a suite of geodynamic models of intraplate lithospheric shortening for two E–W transects (33° 40′ S and 36° S) across the Andes. The models are constrained by local geological and geophysical information. Our results demonstrate a decoupled shortening mode between the brittle upper crust and the ductile lower crust in those areas characterized by a mafic lower crust (36° S transect). In contrast, a more felsic lower crust, such as in the 33° 40′ S transect, results in a coupled shortening mode. Furthermore, we find that differences in lithospheric thickness and the asymmetry of the lithosphere–asthenosphere boundary may promote the formation of a crustal-scale, west-dipping detachment zone that drives the overall deformation and lateral expansion of the orogen. Our study represents the first geodynamic modeling effort in the southern Central Andes aimed at understanding the roles of heterogeneities (crustal composition and thickness) at the scale of the entire lithosphere as well as the geometry of the lithosphere–asthenosphere boundary with respect to mountain building.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Code availability

ASPECT is an open-source code hosted in Computational Infrastructure for Geodynamics (geodynamics.org).

References

  1. Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259:1–13. https://doi.org/10.1016/0040-1951(96)00024-8

    Article  Google Scholar 

  2. Allmendinger RW, Ramos VA, Jordan TE et al (1983) Paleogeography and Andean structural geometry, northwest Argentina. Tectonics 2:1–16. https://doi.org/10.1029/TC002i001p00001

    Article  Google Scholar 

  3. Arcay D, Doin M-P, Tric E et al (2006) Overriding plate thinning in subduction zones: localized convection induced by slab dehydration. Geochem Geophys Geosyst. https://doi.org/10.1029/2005GC001061

    Article  Google Scholar 

  4. Armijo R, Rauld R, Thiele R et al (2010) The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics. https://doi.org/10.1029/2008TC002427

    Article  Google Scholar 

  5. Astaburuaga D (2014) Evolución estructural del límite Mesozoico-Cenozoico de la Cordillera Principal entre los 35 30′ y 36 S, Región del Maule, Chile. Msc. Thesis. Dep. Geol. Univ. Chile, p 128

  6. Astini RA, Dávila FM (2010) Comment on “The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile” by Rolando Armijo al. Tectonics. https://doi.org/10.1029/2009TC002647

    Article  Google Scholar 

  7. Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107:253–273. https://doi.org/10.1130/0016-7606(1995)107%3c0253:TEPEOT%3e2.3.CO;2

    Article  Google Scholar 

  8. Azcuy CL, Caminos R (1987) Diastrofismo: El Sistema Carbonífero en la República Argentina. Acad Nac Ciencias, Córdoba, pp 239–252

    Google Scholar 

  9. Babeyko AY, Sobolev SV (2005) Quantifying different modes of the late Cenozoic shortening in the central Andes. Geology 33:621–624. https://doi.org/10.1130/G21126.1

    Article  Google Scholar 

  10. Bangerth W, Dannberg J, Gassmöller R, Heister T (2018) ASPECT v2.0.1 [software]. https://doi.org/10.5281/zenodo.1297145

  11. Barrionuevo M (2020) The role of the upper plate in the Andean tectonic evolution (33–36°S): insights from structural geology and numerical modeling. Dissertation, University of Buenos Aires-University of Potsdam.

  12. Barrionuevo M, Giambiagi L, Mescua J et al (2019) Miocene deformation in the orogenic front of the Malargüe fold-and-thrust belt (35°30′–36° S): controls on the migration of magmatic and hydrocarbon fluids. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.06.005

    Article  Google Scholar 

  13. Bastías-Mercado F, González J, Oliveros V (2020) Volumetric and compositional estimation of the Choiyoi Magmatic Province and its comparison with other Silicic Large Igneous Provinces. J S Am Earth Sci 102749

  14. Beaumont C, Ellis S, Hamilton J, Fullsack P (1996) Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology 24:675. https://doi.org/10.1130/0091-7613(1996)024%3c0675:MMFSCT%3e2.3.CO;2

    Article  Google Scholar 

  15. Beaumont C, Nguyen M, Jamieson R, Ellis S (2006) Crustal flow modes in large hot orogens. In: Law RD, Searle MP, Godin L (eds) Crustal flow, ductile extrusion and exhumation in continental collision zones. Geol. Soc. Spec. Publ., vol 268, pp 91–145

  16. Bookhagen B, Strecker MR (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet Sci Lett 327–328:97–110. https://doi.org/10.1016/j.epsl.2012.02.005

    Article  Google Scholar 

  17. Boyce D, Charrier R, Farías M (2020) The first andean compressive tectonic phase: sedimentologic and structural analysis of mid-cretaceous deposits in the coastal cordillera, Central Chile (32°50′S). Tectonics 39:1–24. https://doi.org/10.1029/2019TC005825

    Article  Google Scholar 

  18. Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res Solid Earth 85:6248–6252. https://doi.org/10.1029/jb085ib11p06248

    Article  Google Scholar 

  19. Buelow EK, Suriano J, Mahoney JB et al (2018) Sedimentologic and stratigraphic evolution of the Cacheuta basin: constraints on the development of the Miocene retroarc foreland basin, south-central Andes. Lithosphere. https://doi.org/10.1130/L709.1

    Article  Google Scholar 

  20. Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008

    Article  Google Scholar 

  21. Burov EB, Watts AB (2006) The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today v. https://doi.org/10.1130/1052-5173(2006)016%3c4:tltSOc%3e2.0.cO;2

    Article  Google Scholar 

  22. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97:17503. https://doi.org/10.1029/92JB00493

    Article  Google Scholar 

  23. Cegarra MI, Ramos VA (1996) La faja plegada y corrida del Aconcagua. In: Ramos VA (ed) Geología de la región del Aconcagua, Provincias de San Juan y Mendoza, pp 387–422

  24. Charrier R, Baeza O, Elgueta S et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°-36°S.L.). J S Am Earth Sci 15:117–139. https://doi.org/10.1016/S0895-9811(02)00009-3

    Article  Google Scholar 

  25. Charrier R, Ramos VA, Tapia F, Sagripanti L (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37°S (Chile and Western Argentina). Geol Soc Lond Spec Publ 399:13–61. https://doi.org/10.1144/sp399.20

    Article  Google Scholar 

  26. Coutand I, Cobbold PR, De Urreiztieta M et al (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics 20:210–234. https://doi.org/10.1029/2000TC900031

    Article  Google Scholar 

  27. Currie CA, Beaumont C (2011) Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet Sci Lett 303:59–70. https://doi.org/10.1016/j.epsl.2010.12.036

    Article  Google Scholar 

  28. Currie CA, Huismans RS, Beaumont C (2008) Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet Sci Lett 269:436–447. https://doi.org/10.1016/j.epsl.2008.02.037

    Article  Google Scholar 

  29. Davis D, Dahlen FA, Suppe J (1983) Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory. J Geophys Res 88:1153–1172. https://doi.org/10.1029/JB089iB12p10087

    Article  Google Scholar 

  30. Elger K, Oncken O, Glodny J (2005) Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24:1–19. https://doi.org/10.1029/2004TC001675

    Article  Google Scholar 

  31. Farías M, Comte D, Charrier R, Martinod J et al (2010) Crustal-scale structural architecture in central Chile based on seismicity and surface geology: implications for Andean mountain building. Tectonics. https://doi.org/10.1029/2009TC002480

    Article  Google Scholar 

  32. Fuentes F, Horton BK, Starck D, Boll A (2016) Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold-thrust belt, Neuquén basin, Argentina. Geol Mag 153:1066–1084. https://doi.org/10.1017/S0016756816000583

    Article  Google Scholar 

  33. Furlani R (2012) Tomografía de sismos locales en el retroarco andino centro-oeste Argentino entre 32°S y 33.5°S. Estructura cortical e implicaciones tectónicas. Phd Thesis. Universidad Nacional de San Juan

  34. Georgieva V, Gallagher K, Sobczyk A et al (2019) Effects of slab-window, alkaline volcanism, and glaciation on thermochronometer cooling histories, Patagonian Andes. Earth Planet Sci Lett 511:164–176. https://doi.org/10.1016/j.epsl.2019.01.030

    Article  Google Scholar 

  35. Gerbault M, Cembrano J, Mpodozis C et al (2009) Continental margin deformation along the Andean subduction zone: thermo-mechanical models. Phys Earth Planet Inter 177:180–205. https://doi.org/10.1016/j.pepi.2009.09.001

    Article  Google Scholar 

  36. Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes in a transitional zone between flat and normal subduction (33 30′–33 45′ S), Argentina and Chile. J S Am Earth Sci 15(1):101–116

    Article  Google Scholar 

  37. Giambiagi LB, Alvarez PP, Godoy E, Ramos VA (2003a) The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics 369:1–19. https://doi.org/10.1016/S0040-1951(03)00171-9

    Article  Google Scholar 

  38. Giambiagi LB, Ramos VA, Godoy E et al (2003b) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics. https://doi.org/10.1029/2001TC001354

    Article  Google Scholar 

  39. Giambiagi L, Mescua J, Bechis F, Tassara A, Hoke G (2012) Thrust belts of the southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation. Bull Geol Soc Am 124:1339–1351. https://doi.org/10.1130/B30609.1

    Article  Google Scholar 

  40. Giambiagi L, Tassara A, Mescua J et al (2015) Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33°40′S): from the Pacific coast to the Andean foreland. Geol Soc Lond Spec Publ 399:63–82. https://doi.org/10.1144/sp399.14

    Article  Google Scholar 

  41. Gleason GC, Tullis J (1995) A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247:1–23. https://doi.org/10.1016/0040-1951(95)00011-B

    Article  Google Scholar 

  42. Götze HJ, Meurers B, Schmidt S, Steinhauser P (1991) On the isostatic state of the Eastern Alps and the Central Andes—a statistical comparison. GSA Special Paper 265:279–290

    Google Scholar 

  43. Heister T, Dannberg J, Gassmöller R, Bangerth W (2017) High accuracy mantle convection simulation through modern numerical methods—II: realistic models and problems. Geophys J Int 210:833–851. https://doi.org/10.1093/gji/ggx195

    Article  Google Scholar 

  44. Hervé F, Demant A, Ramos VA, Pankhurst RJ, Suárez M (2000) The Southern Andes. Tecton Evol South Am 605–634

  45. Hilley GE, Strecker MR, Ramos VA (2004) Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina. J Geophys Res Solid Earth 109:1–19. https://doi.org/10.1029/2002JB002282

    Article  Google Scholar 

  46. Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica, I: antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70:225–239

    Google Scholar 

  47. Hirth G, Kohlstedt DL (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys Monogr Ser 138:83–105. https://doi.org/10.1029/138GM06

    Article  Google Scholar 

  48. Hoke GD, Aranibar JN, Viale M et al (2013) Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5-35.5°S. Geochem Geophys Geosyst 14:962–978. https://doi.org/10.1002/ggge.20045

    Article  Google Scholar 

  49. Horton BK (2018) Tectonic regimes of the Central and Southern Andes: responses to variations in plate coupling during subduction. Tectonics 37:402–429. https://doi.org/10.1002/2017TC004624

    Article  Google Scholar 

  50. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology 44:647–650. https://doi.org/10.1130/G37918.1

    Article  Google Scholar 

  51. Horton BK, Fuentes F, Boll A et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40. https://doi.org/10.1016/j.jsames.2016.06.003

    Article  Google Scholar 

  52. Ibarra F, Liu S, Meeßen C et al (2019) 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: insights from gravity and geodynamic modelling. Tectonophysics 766:453–468. https://doi.org/10.1016/j.tecto.2019.06.025

    Article  Google Scholar 

  53. Irigoyen MV, Buchan KL, Brown RL (2000) Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province, Argentina. Bull Geol Soc Am 112:803–816. https://doi.org/10.1130/0016-7606(2000)112%3c803:MONAFS%3e2.0.CO;2

    Article  Google Scholar 

  54. Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res 93:3211. https://doi.org/10.1029/JB093iB04p03211

    Article  Google Scholar 

  55. Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today 12:4–10. https://doi.org/10.1130/1052-5173(2002)012%3c0004:SOTCLT%3e2.0.CO;2

    Article  Google Scholar 

  56. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  57. Jordan TW, Isacks B, Allmendinger RW et al (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341. https://doi.org/10.1130/0016-7606(1983)94%3c341:ATRTGO%3e2.0.CO;2

    Article  Google Scholar 

  58. Julve J (2019) Estructura cortical bajo los Andes del Sur y rol del régimen termo-mecánico en la distribución y estilo de su deformación. Memoria para optar al Titulo de Geologo. http://repositorio.udec.cl/jspui/handle/11594/3443

  59. Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slabs. J S Am Earth Sci 15:39–57. https://doi.org/10.1016/S0895-9811(02)00005-6

    Article  Google Scholar 

  60. Kay SM, Ramos VA, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? Geology 17:324–328. https://doi.org/10.1130/0091-7613(1989)017%3c0324:LPTJSM%3e2.3.CO;2

    Article  Google Scholar 

  61. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Bull Geol Soc Am 117:67–88. https://doi.org/10.1130/B25431.1

    Article  Google Scholar 

  62. Kay SM, Burns WM, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. Spec Pap Soc Am 407:19

    Google Scholar 

  63. Kimbrough DL, Mahoney JB, Mescua JF, Giambiagi LB, Buelow EK (2015) New zircon U-Pb ages define a strongly episodic history of magmatism for the Permo-Triassic Choiyoi Silicic Large Igneous Province of Chile and Argentina. In: Geological Society of America Annual Meeting 2015, conference proceedings. GSA Abstracts with Programs, vol 47, no 7, Paper 196-9

  64. Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34 S–36 S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473(3–4):283–299

    Article  Google Scholar 

  65. Kley J, Monaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301:75–94. https://doi.org/10.1016/S0040-1951(98)90223-2

    Article  Google Scholar 

  66. Kozlowski E, Manceda R, Ramos VA (1993) Estructura. In: Geología y recursos naturales de Mendoza. Asociación Geológica, Buenos Aires, pp 235–256

  67. Kronbichler M, Heister T, Bangerth W (2012) High accuracy mantle convection simulation through modern numerical methods. Geophys J Int 191:12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.x

    Article  Google Scholar 

  68. Kusznir NJ, Park RG (1986) Continental lithosphere strength: the critical role of lower crustal deformation. Geol Soc Lond Spec Publ 24:79–93. https://doi.org/10.1144/gsl.sp.1986.024.01.09

    Article  Google Scholar 

  69. Kusznir NJ, Whitmarsh RB, England P et al (1991) The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamic constraints [and Discussion]. https://doi.org/10.1098/rsta.1991.0109

  70. Lacombe O, Bellahsen N (2016) Thick-skinned tectonics and basement-involved fold–thrust belts: insights from selected Cenozoic orogens. Geol Mag 153:763–810. https://doi.org/10.1017/S0016756816000078

    Article  Google Scholar 

  71. Litvak VD et al (2018) The Late Paleogene to Neogene Volcanic Arc in the Southern Central Andes (28°–37° S). In: Folguera A et al (eds) The evolution of the Chilean-Argentinean Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67774-3_20

  72. Liu S (2020) Controls of foreland-deformation patterns in the orogen-foreland shortening system. PhD thesis, University of Potsdam, Potsdam

  73. Liu S, Currie CA (2016) Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction. Tectonophysics 666:33–47. https://doi.org/10.1016/j.tecto.2015.10.010

    Article  Google Scholar 

  74. Llambías EJ, Kleiman LE, Salvarredi JA (1993) El magmatismo gondwánico. In: Ramos V (ed) Geología y Recursos Naturales de Mendoza. Congreso Geológico Argentino. pp 53–64

  75. Lossada AC, Hoke GD, Giambiagi LB et al (2020) Detrital thermochronology reveals major middle Miocene exhumation of the eastern flank of the Andes that predates the Pampean flat-slab (33°–33.5°S). Tectonics. https://doi.org/10.1029/2019tc005764

    Article  Google Scholar 

  76. Lowry AR, Pérez-Gussinyé M (2011) The role of crustal quartz in controlling Cordilleran deformation. Nature 471:353–359. https://doi.org/10.1038/nature09912

    Article  Google Scholar 

  77. Lucazeau F (2019) Analysis and mapping of an updated terrestrial heat flow data set. Geochem Geophys Geosyst 20:4001–4024. https://doi.org/10.1029/2019GC008389

    Article  Google Scholar 

  78. Mackwell SJ, Zimmerman ME, Kohlstedt DL (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. J Geophys Res Solid Earth 103:975–984. https://doi.org/10.1029/97jb02671

    Article  Google Scholar 

  79. Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36:311–314. https://doi.org/10.1130/G24412A.1

    Article  Google Scholar 

  80. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquen Rift in the Malargue fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suarez RS, Welsink HJ (eds) Pet basins South Am AAPG Mem, vol 62, pp 369–382

  81. Marot M, Monfret T, Gerbault M et al (2014) Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys J Int 199:1633–1654. https://doi.org/10.1093/gji/ggu355

    Article  Google Scholar 

  82. Massonne HJ, Calderón M (2008) P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian crustal thickening close to the western Gondwana margin. Rev Geol Chile 35:215–231. https://doi.org/10.4067/S0716-02082008000200002

    Article  Google Scholar 

  83. McGroder MF, Lease RO, Pearson DM (2015) Along-strike variation in structural styles and hydrocarbon occurrences, Subandean fold-and-thrust belt and inner foreland, Colombia to Argentina. In: Geodynamics of a cordilleran orogenic system: the Central Andes of Argentina and Northern Chile. Geological Society of America, p 2016. https://doi.org/10.1130/2015.1212(05)

  84. Meeßen C, Sippel J, Scheck-Wenderoth M et al (2018) Crustal structure of the Andean Foreland in Northern Argentina: results from data-integrative three-dimensional density modeling. J Geophys Res Solid Earth 123:1875–1903. https://doi.org/10.1002/2017JB014296

    Article  Google Scholar 

  85. Mescua JF, Giambiagi LB, Ramos VA (2013) Levantamiento cretácico tardío en la faja plegada y corrida de malargüe (35°S), Andes Centrales del sur, Argentina y Chile. Andean Geol 40:102–116. https://doi.org/10.5027/andgeoV40n1-a05

    Article  Google Scholar 

  86. Mescua JF, Giambiagi LB, Tassara A et al (2014) Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold-and-thrust belt at 35°S, Andes of Argentina. Geosphere 10:585–609. https://doi.org/10.1130/GES00939.1

    Article  Google Scholar 

  87. Mescua JF, Giambiagi L, Barrionuevo M et al (2016) Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36°S). Geol Mag 153:945–961. https://doi.org/10.1017/S0016756816000364

    Article  Google Scholar 

  88. Mouthereau F, Watts AB, Burov E (2013) Structure of orogenic belts controlled by lithosphere age. Nat Geosci 6:785–789. https://doi.org/10.1038/ngeo1902

    Article  Google Scholar 

  89. Mpodozis C, Cornejo P (2012) Cenozoic Tectonics and Porphyry Copper Systems of the Chilean Andes. Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc Econ Geol, Boulder, pp 329–360

  90. Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Geology of the Andes and its relation to hydrocarbon and mineral resources, vol 11. Circumpacific Counc Energy Miner Resour, pp 59–90

  91. Nyström J, Vergara M, Morata D, Levi B (2003) Tertiary volcanism during extension in the Andean foothills of central Chile (33°15′–33°45′S). Geol Soc Am Bull 115:1523. https://doi.org/10.1130/B25099.1

    Article  Google Scholar 

  92. Oliveros V, González J, Espinoza Vargas M et al (2018) The early stages of the magmatic arc in the Southern Central Andes, pp 165–190

  93. Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the Central Andean Upper Plate System—facts, fiction, and constraints for plateau models. In: The Andes. Springer, Berlin, pp 3–27. https://doi.org/10.1007/978-3-540-48684-8_1

  94. Orts DL, Folguera A, Giménez M, Ramos V (2012) Variable structural controls through time in the Southern Central Andes (~36oS). Andean Geol 39:220–241. https://doi.org/10.5027/andgeoV39n2-a02

    Article  Google Scholar 

  95. Peacock SA (1990) Fluid processes in subduction zones. Science 80(248):329–337. https://doi.org/10.1126/science.248.4953.329

    Article  Google Scholar 

  96. Pearson DM, Kapp P, DeCelles PG, Reiners PW, Gehrels GE, Ducea MN, Pullen A (2013) Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. Geosphere 9:1766–1782. https://doi.org/10.1130/GES00923.1

    Article  Google Scholar 

  97. Piquer J, Rivera O, Yañez G, Oyarzun N (2020) The Piuquencillo Fault System: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity. Solid Earth Discuss. https://doi.org/10.5194/se-2020-142

    Article  Google Scholar 

  98. Ramos VA (1988) The tectonics of the Central Andes; 30° to 33° S latitude. In: Clark Jr SP, Burchfiel BC, Suppe J (eds) Processes in Continental Lithospheric Deformation. Geological Society of America. https://doi.org/10.1130/SPE218-p31

  99. Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22:183–190. https://doi.org/10.1111/j.1365-2621.2006.01230.x

    Article  Google Scholar 

  100. Ramos VA (2010) The tectonic regime along the Andes: present-day and Mesozoic regimes. Geol J 45:2–25. https://doi.org/10.1002/gj.1193

    Article  Google Scholar 

  101. Ramos VA, Folguera A (2011) Payenia volcanic province in the Southern Andes: an appraisal of an exceptional quaternary tectonic setting. J Volcanol Geotherm Res 201:53–64. https://doi.org/10.1016/j.jvolgeores.2010.09.008

    Article  Google Scholar 

  102. Ramos VA, Jordan TE, Allmendinger RW et al (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5:855–880. https://doi.org/10.1029/TC005i006p00855

    Article  Google Scholar 

  103. Ramos VA, Cegarra M, Cristallini E (1996) Cenozoic tectonics of the High Andes of west-central Argentina (30–36°S latitude). Tectonophysics 259:185–200. https://doi.org/10.1016/0040-1951(95)00064-X

    Article  Google Scholar 

  104. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78. https://doi.org/10.1016/S0895-9811(02)00006-8

    Article  Google Scholar 

  105. Ramos VA, Zapata T, Cristallini EO, Introcaso A (2004) The Andean thrust system—latitudinal variations in structural styles and orogenic shortening. AAPG Mem 82:30–50

    Google Scholar 

  106. Ranalli G, Murphy DC (1987) Rheological stratification of the lithosphere. Tectonophysics 132:281–295. https://doi.org/10.1016/0040-1951(87)90348-9

    Article  Google Scholar 

  107. Riesner M, Lacassin R, Simoes M et al (2018) Revisiting the crustal structure and kinematics of the Central Andes at 33.5°S: implications for the mechanics of Andean mountain building. Tectonics 37:1347–1375. https://doi.org/10.1002/2017TC004513

    Article  Google Scholar 

  108. Rodriguez Piceda C, Scheck Wenderoth M, Gomez Dacal ML et al (2020) Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. Int J Earth Sci. https://doi.org/10.1007/s00531-020-01962-1

    Article  Google Scholar 

  109. Sato AM, Llambías EJ, Basei MAS, Castro CE (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J S Am Earth Sci 63:48–69. https://doi.org/10.1016/j.jsames.2015.07.005

    Article  Google Scholar 

  110. Schellart WP (2004) Kinematics of subduction and subduction-induced flow in the upper mantle. J Geophys Res Solid Earth 109:1–19. https://doi.org/10.1029/2004JB002970

    Article  Google Scholar 

  111. Scheuber E et al (2006) Exhumation and basin development related to formation of the Central Andean Plateau, 21° S. In: Oncken O et al (eds) The Andes. Frontiers in Earth Sciences. Springer, Berlin. https://doi.org/10.1007/978-3-540-48684-8_13

  112. Schmeling H, Babeyko AY, Enns A et al (2008) A benchmark comparison of spontaneous subduction models. Towards a free surface. Phys Earth Planet Inter 171:198–223. https://doi.org/10.1016/j.pepi.2008.06.028

    Article  Google Scholar 

  113. SEGEMAR (1997) Mapa Geológico de la República Argentina, Escala 1:2.500.000. Servicio Geológico y Minero Argentino

  114. SERNAGEOMIN (2003) Mapa Geológico de Chile, Escala 1:1.000.000. Servicio Nacional de Geología y Minería, Publicación Geológica Digital no. 4

  115. Sigismondi ME (2012) Estudio de la deformación litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexión. Dissertation. University of Buenos Aires

  116. Silvestro J, Kraemer P, Achilli F, Brinkworth W (2005) Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35–36 S, Malargüe. Rev la Asoc Geol Argentina 60:627–643

    Google Scholar 

  117. Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33:617–620. https://doi.org/10.1130/G21557.1

    Article  Google Scholar 

  118. Sobolev SV, Babeyko AY, Koulakov I, Oncken O (2006) Mechanism of the Andean orogeny: insight from numerical modeling. In: The Andes. Springer, pp 513–535

  119. Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sci Lett 331–332:152–163. https://doi.org/10.1016/j.epsl.2012.03.003

    Article  Google Scholar 

  120. Sruoga P, Rubinstein NA, Etcheverría MP et al (2008) Estadío inicial del arco volcánico Neógeno en la Cordillera principal de Mendoza (35° S). Rev la Asoc Geol Argentina 63:454–469

    Google Scholar 

  121. Stalder NF, Herman F, Fellin GM et al (2020) The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): evidence from low-temperature thermochronology. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103276

    Article  Google Scholar 

  122. Stern CR, Skewes MA (1995) Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, Central Chile. Andean Geol 22:261–272. https://doi.org/10.5027/ANDGEOV22N2-A09

    Article  Google Scholar 

  123. Strecker MR, Alonso RN, Bookhagen B et al (2007) Tectonics and climate of the Southern Central Andes. Annu Rev Earth Planet Sci 35:747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158

    Article  Google Scholar 

  124. Tapia F (2015) Evolución Tectónica y Configuración Actual De Los Andes Centrales del Sur (34°46’–35°30'S). Dissertation. Universidad de Chile

  125. Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys J Int 189:161–168. https://doi.org/10.1111/j.1365-246X.2012.05397.x

    Article  Google Scholar 

  126. Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litosfera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30:1–35. https://doi.org/10.4067/S0716-02082003000200002

    Article  Google Scholar 

  127. Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res Solid Earth 111:1–26. https://doi.org/10.1029/2005JB003976

    Article  Google Scholar 

  128. Thomson SN, Brandon MT, Tomkin JH et al (2010) Glaciation as a destructive and constructive control on mountain building. Nature 467:313–317. https://doi.org/10.1038/nature09365

    Article  Google Scholar 

  129. Tunik M, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273. https://doi.org/10.1016/j.tecto.2010.04.017

    Article  Google Scholar 

  130. Turienzo M, Dimieri L, Frisicale C, Araujo V, Sanchéz N (2012) Cenozoic structural evolution of the Argentinean Andes at 34°40’S: a close relationship between thick and thin-skinned deformation. Andean Geol. https://doi.org/10.5027/andgeoV39n2-a07

    Article  Google Scholar 

  131. Uliana MA, Biddle KT, Cerdan J (1989) Mesozoic extension and the formation of Argentine sedimentary basins: chapter 39: analogs

  132. Val P, Venerdini AL, Ouimet W et al (2018) Tectonic control of erosion in the southern Central Andes. Earth Planet Sci Lett 482:160–170. https://doi.org/10.1016/j.epsl.2017.11.004

    Article  Google Scholar 

  133. Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ (1995) Tectonic evolution and paleogeography of the Neuquen Basin, Argentina: abstract. In: AAPG bulletin. AAPG Special Volumes, pp 383–402

  134. Vilà M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490:152–164. https://doi.org/10.1016/j.tecto.2010.05.003

    Article  Google Scholar 

  135. Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res Solid Earth 104:28957–28981. https://doi.org/10.1029/1999jb900248

    Article  Google Scholar 

  136. Wolf SG, Huismans RS (2019) Mountain building or backarc extension in ocean-continent subduction systems—a function of backarc lithospheric strength and absolute plate velocities. J Geophys Res Solid Earth. https://doi.org/10.1029/2018JB017171

    Article  Google Scholar 

  137. Yáñez G, Cembrano J (2004) Role of viscous plate coupling in the late Tertiary Andean tectonics. J Geophys Res Solid Earth 109:1–21. https://doi.org/10.1029/2003jb002494

    Article  Google Scholar 

  138. Yáñez GA, Gana P, Fernández R (1998) Origen y significado geológico de la Anomalía Melipilla. Chile Central Rev Geol Chile. https://doi.org/10.4067/S0716-02081998000200005

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is a result of the PhD dissertation of M. Barrionuevo under a binational PhD program between the University of Buenos Aires (Argentina) and University of Potsdam (Germany). This research was supported by grants from CONICET (GII StRATEGy to L. Giambiagi), the Agencia de Promoción Científica y Tecnológica (PICT-2015-1181 to J.F. Mescua and PICT-2016-0269 to L. Giambiagi), and a grant by Deutsche Forschungsgemeinschaft (DFG) to M. Strecker (STR 373/34-1; StRATEGy). We are grateful to the editor U. Riller and the reviewers D. Whipp and J. Kley for their detailed reviews that significantly improved this manuscript. We thank Ch. Dullo, editor-in-chief, for handling this manuscript. We thank C. Kallich for support with artwork. We are grateful to have been able to use the Computational Infrastructure for Geodynamics (geodynamics.org), which is funded by the U.S. National Science Foundation under award EAR-0949446 and EAR-1550901, for supporting the development of ASPECT.

Funding

This research was supported by grants from: CONICET (GII StRATEGy to L. Giambiagi) and the Agencia de Promoción Científica y Tecnológica (PICT-2015-1181 to J.F. Mescua and PICT-2016-0269 to L. Giambiagi); by the Deutsche Forschungsgemeinschaft and the Federal State of Brandenburg under the auspices of the International Research Training Group IGK2018 “SuRfAce processes, TEctonics and Georesources: The Andean foreland basin of Argentina” (StRATEGy; DFG grant STR 373/34-1 to M.R. Strecker).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matías Barrionuevo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrionuevo, M., Liu, S., Mescua, J. et al. The influence of variations in crustal composition and lithospheric strength on the evolution of deformation processes in the southern Central Andes: insights from geodynamic models. Int J Earth Sci (Geol Rundsch) (2021). https://doi.org/10.1007/s00531-021-01982-5

Download citation

Keywords

  • Southern Central Andes
  • Coupled/decoupled deformation
  • Crustal composition
  • Lithospheric strength
  • Direction of tectonic transport