Early Cretaceous bimodal volcanic rocks in the Yinshan belt, North China Craton: age, petrogenesis, and geological significance

Abstract

Determining the age and petrogenesis of the Mesozoic magmatic rocks may provide crucial evidence regarding the tectonic setting and evolution of the North China Craton (NCC). In this paper, we present new zircon U–Pb ages and geochemical data for bimodal volcanic rocks from Zhuozi area in the eastern Yinshan belt, NCC, to discuss their petrogenesis and tectonic implications. The volcanic rock suite consists of basalts, rhyolites, and trachytes. According to the results of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), the rhyolitic and trachytic rocks have zircon U–Pb ages of 136.9 ± 0.8 Ma and 134.0 ± 1.7 Ma, respectively, representing their eruption ages. The basalts are enriched in large-ion lithophile elements (LILE; Ba, Rb, Sr, and Th) and light rare-earth elements (LREE), and are relatively depleted in high field strength elements (HFSE; Nb, Ta, and Ti). In addition, the basalts are characterized by high fractionations of rare-earth elements (REE), with (La/Yb)N = 24.87–42.85. These features suggest that they were derived from low-degree partial melting of enriched lithospheric mantle metasomatized by subduction-related components. The rhyolitic rocks have low mean Al2O3 (12.26 wt%) and TiO2 (0.14 wt%) contents and Mg# (14.92) values, with relatively low total REE abundances. They have high alkali and Zr, Ce, Y, and Nb contents and high Ga/Al ratios, with notably positive Pb and negative Sr, Ba, and Eu anomalies observed in the primitive mantle-normalized trace element diagram. These features indicate that the rocks exhibit characteristics of A1-type granite and likely derived from the partial melting of a crustal source. The trachytic rocks are show moderate trace elements and SiO2, MgO, Fe2O3T, and TiO2 contents. They were possibly generated by fractional crystallization of the underplating basaltic magmas and assimilated minor crustal materials. The geochemical characteristics, in combination with the regional geology, suggest that the bimodal volcanic rocks formed in an intraplate extensional setting likely associated with the retreat of the subducted Paleo-Pacific plate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geoth Res 102:67–95. https://doi.org/10.1016/S0377-0273(00)00182-7

    Article  Google Scholar 

  2. Bi JH, Ge WC, Yang H, Wang ZH, Dong Y, Liu XW, Ji Z (2017) Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China. J Asian Earth Sci 134:160–175. https://doi.org/10.1016/j.jseaes.2016.09.022

    Article  Google Scholar 

  3. Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  4. Cao GY, Xue HM, Liu Z, Lu ZL (2019) U-Pb zircon, geochemical, and Sr-Nd-Hf isotopic data for late Mesozoic volcanic rocks along the Tan-Lu fault zone of Shandong Province, eastern China: constraints on magma genesis and lithospheric thinning. Int Geol Rev 61:972–996. https://doi.org/10.1080/00206814.2018.1487340

    Article  Google Scholar 

  5. Chen L, Tao W, Zhao L, Zheng TY (2008) Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett 267:56–68. https://doi.org/10.1016/j.epsl.2007.11.024

    Article  Google Scholar 

  6. Chen CL, Liu YS, Feng LP, Foley SF, Zhou L, Ducea MN, Hu ZC (2018a) Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta 238:55–67. https://doi.org/10.1016/j.gca.2018.06.038

    Article  Google Scholar 

  7. Chen L, Tang L, Li X, Dong Y, Yu X, Ding W (2018b) Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution. Int Geol Rev 61:1037–1051. https://doi.org/10.1080/00206814.2018.1484305

    Article  Google Scholar 

  8. Dong Y, Liu X, Zhang G, Chen Q, Zhang X, Li W, Yang C (2012) Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. J Asian Earth Sci 47:123–142

    Article  Google Scholar 

  9. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2

    Article  Google Scholar 

  10. Elliott T (2003) Tracers of the slab, vol 138. American Geophysical Union, Washington

    Google Scholar 

  11. Fan W, Menzies M (1992) Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica Et Metallogenia 16:171–180

    Google Scholar 

  12. Feng S (1998) Time and stratigraphic sequence of Bainuyangpan formation, Bainuyanypan area, inner Mongolia. Geol Inner Mangolia 4:20–26 (in Chinese with English abstract)

    Google Scholar 

  13. Fitton JG, James D, Kempton PD, Ormerod DS, Leeman WP (1988) The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. J Petrol. https://doi.org/10.1093/petrology/Special_Volume.1.331

    Article  Google Scholar 

  14. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513. https://doi.org/10.1093/petrology/19.3.463

    Article  Google Scholar 

  15. Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365:332–334

    Article  Google Scholar 

  16. Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975. https://doi.org/10.1016/S0016-7037(98)00121-5

    Article  Google Scholar 

  17. Gao S et al (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897. https://doi.org/10.1038/nature03162

    Article  Google Scholar 

  18. Geng XL, Foley SF, Liu YS, Wang ZC, Hu ZC, Zhou L (2019) Thermal-chemical conditions of the North China Mesozoic lithospheric mantle and implication for the lithospheric thinning of cratons. Earth Planet Sci Lett 516:1–11. https://doi.org/10.1016/j.epsl.2019.03.012

    Article  Google Scholar 

  19. Green NL (2006) Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87:23–49. https://doi.org/10.1016/j.lithos.2005.05.003

    Article  Google Scholar 

  20. Guo P et al (2014) Lithosphere thinning beneath west North China Craton: evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos 202–203:37–54. https://doi.org/10.1016/j.lithos.2014.04.024

    Article  Google Scholar 

  21. Guo F, Li H, Fan W, Li J, Zhao L, Huang M, Xu W (2015) Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos 224–225:46–60

    Article  Google Scholar 

  22. Guo P et al (2018) The Early Cretaceous bimodal volcanic suite from the Yinshan Block, western North China Craton: origin, process and geological significance. J Asian Earth Sci 160:348–364. https://doi.org/10.1016/j.jseaes.2017.10.023

    Article  Google Scholar 

  23. Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D, Shuwen D (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett 161:215–230. https://doi.org/10.1016/S0012-821x(98)00152-6

    Article  Google Scholar 

  24. He XF, Santosh M, Ganguly S (2017) Mesozoic felsic volcanic rocks from the North China craton: intraplate magmatism associated with craton destruction. Geol Soc Am Bull 129:947–969. https://doi.org/10.1130/B31607.1

    Article  Google Scholar 

  25. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb And Pb In Oceanic Basalts—new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45. https://doi.org/10.1016/0012-821x(86)90038-5

    Article  Google Scholar 

  26. Hou T, Zhang Z, Keiding JK, Veksler IV (2015) Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores. J Petrol 56:893–918. https://doi.org/10.1093/petrology/egv021

    Article  Google Scholar 

  27. Huang JL, Zhao DP (2006) High-resolution mantle tomography of China and surrounding regions. J Geophys Res-Sol Ea. https://doi.org/10.1029/2005jb004066

    Article  Google Scholar 

  28. Irving AJ (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim Cosmochim Acta 42:743–770. https://doi.org/10.1016/0016-7037(78)90091-1

    Article  Google Scholar 

  29. Jia L, Wang L, Wang G, Lei S, Wu X (2019) Petrogenesis of the Late Triassic shoshonitic Shadegai pluton from the northern North China Craton: implications for crust-mantle interaction and post-collisional extension. Geosci Front 10:595–610. https://doi.org/10.1016/j.gsf.2018.08.002

    Article  Google Scholar 

  30. Johnson KTM (1994) Experimental cpx/and garnet/melt partitioning of REE and other trace elements at high pressures; petrogenetic implications. Mineral Mag 58:454–455

    Article  Google Scholar 

  31. Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Miner Petrol 133:60–68. https://doi.org/10.1007/s004100050437

    Article  Google Scholar 

  32. Lallemand S, Heuret A, Boutelier D (2005) On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophy Geosy. https://doi.org/10.1029/2005gc000917

    Article  Google Scholar 

  33. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic-rocks based on the total Alkali Silica Diagram. J Petrol 27:745–750

    Article  Google Scholar 

  34. Li SR, Santosh M (2017) Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res 50:267–292. https://doi.org/10.1016/j.gr.2017.05.007

    Article  Google Scholar 

  35. Li SG et al (1993) Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: timing and processes. Chem Geol 109:89–111. https://doi.org/10.1016/0009-2541(93)90063-O

    Article  Google Scholar 

  36. Liu Y, Gao S, Kelemen PB, Xu W (2008) Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta 72:2349–2376. https://doi.org/10.1016/j.gca.2008.02.018

    Article  Google Scholar 

  37. Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546. https://doi.org/10.1007/s11434-010-3052-4

    Article  Google Scholar 

  38. Liu C et al (2018a) Geochronology and geochemistry of the Late Jurassic bimodal volcanic rocks from Hailisen area, central-southern Great Xing'an Range, Northeast China. Geol J 53:2099–2117. https://doi.org/10.1002/gj.3036

    Article  Google Scholar 

  39. Liu S et al (2018b) Integrated elemental and Sr–Nd–Pb–Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle. J Geodyn 114:19–40. https://doi.org/10.1016/j.jog.2017.11.007

    Article  Google Scholar 

  40. Ludwig KR (2003) ISOPLOT 3.0: a geochronological toolkit for microsoft excel. Special publication no 4. Berkeley Geochronol Center 4:1–71

    Google Scholar 

  41. Ma L, Jiang SY, Hofmann AW, Xu YG, Dai BZ, Hou ML (2016) Rapid lithospheric thinning of the North China Craton: new evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol 432:1–15. https://doi.org/10.1016/j.chemgeo.2016.03.027

    Article  Google Scholar 

  42. Menzies MA, Fan WM, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics, vol 76. Geological Society Special Publication, London, pp 71–81

    Google Scholar 

  43. Nie F, Liu Y, Zhao Y, Cao Y (2012) Discovery of Dasuji and Caosiyao large-size Mo deposits in central Inner Mongolia and its geological significances. Mineral Deposits 31:930–940 (in Chinese with English abstract)

    Google Scholar 

  44. Niu Y (2005) Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in eastern China. Geol J China Univ 11:9–46 (in Chinese with English abstract)

    Google Scholar 

  45. Niu Y (2014) Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonics Metallogeny 10:23–46. https://doi.org/10.1127/gtm/2014/0009

    Article  Google Scholar 

  46. Pang CJ, Wang XC, Xu YG, Wen SN, Kuang YS, Hong LB (2015) Pyroxenite-derived Early Cretaceous lavas in the Liaodong Peninsula: implication for metasomatism and thinning of the lithospheric mantle beneath North China Craton. Lithos 227:77–93. https://doi.org/10.1016/j.lithos.2015.03.022

    Article  Google Scholar 

  47. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48. https://doi.org/10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  48. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. https://doi.org/10.1016/0012-821X(73)90129-5

    Article  Google Scholar 

  49. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47. https://doi.org/10.1007/bf00375192

    Article  Google Scholar 

  50. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285. https://doi.org/10.1146/annurev.earth.23.1.251

    Article  Google Scholar 

  51. Ribeiro JM, Stern RJ, Kelley KA, Martinez F, Ishizuka O, Manton WI, Ohara Y (2013) Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochem Geophy Geosy 14:4585–4607. https://doi.org/10.1002/ggge.20244

    Article  Google Scholar 

  52. Rudnick RL, Fountain DM (1995) Nature and composition of the continental-crust—a lower crustal perspective. Rev Geophys 33:267–309. https://doi.org/10.1029/95rg01302

    Article  Google Scholar 

  53. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Pub 42:313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  54. Tang YJ, Zhang HF, Ying JF, Zhang J, Liu XM (2008) Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 101:435–452. https://doi.org/10.1016/j.lithos.2007.09.006

    Article  Google Scholar 

  55. Tang YJ, Zhang HF, Ying JF (2014) Genetic significance of Triassic alkali-rich intrusive rocks in the Yinshan and neighboring areas. Acta Petrologica Sinica 30:2031–2040 (in Chinese with English abstract)

    Google Scholar 

  56. Tang J, Xu W, Wang F, Ge W (2018) Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Sci China Earth Sci 61:527–559. https://doi.org/10.1007/s11430-017-9174-1

    Article  Google Scholar 

  57. Teng XM, Santosh M, Tang L (2018) The Early Cretaceous Shangzhuang layered mafic intrusion and its bearing on decratonization of the North China Craton. Geol Mag 155:1475–1506. https://doi.org/10.1017/s0016756817000371

    Article  Google Scholar 

  58. Varol E, Temel A, Yürür T, Gourgaud A, Bellon H (2014) Petrogenesis of the Neogene bimodal magmatism of the Galatean Volcanic Province, Central Anatolia, Turkey. J Volcanol Geoth Res 280:14–29. https://doi.org/10.1016/j.jvolgeores.2014.04.014

    Article  Google Scholar 

  59. Wang C, Liu Y, Min N, Zong K, Hu Z, Gao S (2016a) Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos 261:109–127. https://doi.org/10.1016/j.lithos.2015.12.011

    Article  Google Scholar 

  60. Wang CM, Chen L, Bagas L, Lu YJ, He XY, Lai XR (2016b) Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton. Int J Earth Sci 105:1563–1589. https://doi.org/10.1007/s00531-015-1269-9

    Article  Google Scholar 

  61. Wang G et al (2017) Molybdenite Re–Os age, H-O–C–S–Pb isotopes, and fluid inclusion study of the Caosiyao porphyry Mo deposit in Inner Mongolia, China. Ore Geol Rev 81:728–744. https://doi.org/10.1016/j.oregeorev.2016.07.008

    Article  Google Scholar 

  62. Wang Y, Sun LX, Zhou LY, Xie YT (2018a) Discussion on the relationship between the Yanshanian movement and cratonic destruction in North China. Sci China Earth Sci 61:499–514. https://doi.org/10.1007/s11430-017-9177-2

    Article  Google Scholar 

  63. Wang Z, Kusky TM, Capitanio FA (2018b) Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction. Tectonophysics 723:95–106. https://doi.org/10.1016/j.tecto.2017.11.041

    Article  Google Scholar 

  64. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413–433. https://doi.org/10.1007/s00410-006-0068-5

    Article  Google Scholar 

  65. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419. https://doi.org/10.1007/bf00402202

    Article  Google Scholar 

  66. White WM, Klein EM (2014) Composition of the Oceanic Crust 457–496. https://doi.org/10.1016/b978-0-08-095975-7.00315-6

  67. Wilde SA (2015) Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—a review of the evidence. Tectonophysics 662:345–362. https://doi.org/10.1016/j.tecto.2015.05.006

    Article  Google Scholar 

  68. Wright JB (1969) A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geol Mag 106:370–384. https://doi.org/10.1017/s0016756800058222

    Article  Google Scholar 

  69. Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005a) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119. https://doi.org/10.1016/j.epsl.2005.02.019

    Article  Google Scholar 

  70. Wu FY, Yang JH, Wilde SA, Zhang XO (2005b) Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol 221:127–156. https://doi.org/10.1016/j.chemgeo.2005.04.010

    Article  Google Scholar 

  71. Wu K, Ling M-X, Sun W, Guo J, Zhang C-C (2017) Major transition of continental basalts in the Early Cretaceous: implications for the destruction of the North China Craton. Chem Geol 470:93–106. https://doi.org/10.1016/j.chemgeo.2017.08.025

    Article  Google Scholar 

  72. Xia QK, Liu J, Liu SC, Kovacs I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97. https://doi.org/10.1016/j.epsl.2012.11.024

    Article  Google Scholar 

  73. Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics. https://doi.org/10.1029/2002tc001484

    Article  Google Scholar 

  74. Xu YG (2001) Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth Part A 26:747–757. https://doi.org/10.1016/S1464-1895(01)00124-7

    Article  Google Scholar 

  75. Xu WL, Gao S, Wang QH, Wang DY, Liu YS (2006) Mesozoic crustal thickening of the eastern North China craton: evidence from eclogite xenoliths and petrologic implications. Geology 34:721–724. https://doi.org/10.1130/G22551.1

    Article  Google Scholar 

  76. Xue F, Santosh M, Tsunogae T, Yang F (2019) Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere–asthenosphere interaction and craton destruction in the North China Craton. Lithos 326–327:174–199. https://doi.org/10.1016/j.lithos.2018.12.013

    Article  Google Scholar 

  77. Yang W, Li S (2008) Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: implications for lithospheric thinning of the North China Craton. Lithos 102:88–117. https://doi.org/10.1016/j.lithos.2007.09.018

    Article  Google Scholar 

  78. Yang QY, Santosh M (2017) The building of an Archean microcontinent: evidence from the North China Craton. Gondwana Res 50:3–37. https://doi.org/10.1016/j.gr.2017.01.003

    Article  Google Scholar 

  79. Yang F, Santosh M, Kim SW (2018a) Mesozoic magmatism in the eastern North China Craton: insights on tectonic cycles associated with progressive craton destruction. Gondwana Res 60:153–178. https://doi.org/10.1016/j.gr.2018.04.003

    Article  Google Scholar 

  80. Yang J, Zhao L, Kaus BJP, Lu G, Wang K, Zhu R (2018b) Slab-triggered wet upwellings produce large volumes of melt: insights into the destruction of the North China Craton. Tectonophysics 746:266–279. https://doi.org/10.1016/j.tecto.2017.04.009

    Article  Google Scholar 

  81. Zhai MG et al (2004) Time range of Mesozoic tectonic regime inversion in eastern North China Block. Sci China Ser D-Earth Sci 47:151–159. https://doi.org/10.1360/02yd0416

    Article  Google Scholar 

  82. Zhang S, Wu T, Xu X, Byamba J, Amarjargal A, Wang S, Li Z (2005) Significance of discovery of early Cretaceous shoshonite in central Inner Mongolia. Geol J China Univ 41:212–218 (in Chinese with English abstract)

    Google Scholar 

  83. Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW, Chen HH (2009) Late Paleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110:229–246. https://doi.org/10.1016/j.lithos.2009.01.008

    Article  Google Scholar 

  84. Zhang C, Ma CQ, Liao QA, Zhang JY, She ZB (2011) Implications of subduction and subduction zone migration of the Paleo-Pacific Plate beneath eastern North China, based on distribution, geochronology, and geochemistry of Late Mesozoic volcanic rocks. Int J Earth Sci 100:1665–1684. https://doi.org/10.1007/s00531-010-0582-6

    Article  Google Scholar 

  85. Zhang SH, Zhao Y, Ye H, Hou KJ, Li CF (2012) Early Mesozoic alkaline complexes in the northern North China Craton: implications for cratonic lithospheric destruction. Lithos 155:1–18. https://doi.org/10.1016/j.lithos.2012.08.009

    Article  Google Scholar 

  86. Zhang SH, Zhao Y, Davis GA, Ye H, Wu F (2014) Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: implications for lithospheric thinning and decratonization. Earth Sci Rev 131:49–87. https://doi.org/10.1016/j.earscirev.2013.12.004

    Article  Google Scholar 

  87. Zhang J et al (2017a) Yanshanian deformation in Western Shandong, eastern North China Craton: response to a transition from paleo-Pacific to Pacific Plate subduction. Geol J 52:32–43. https://doi.org/10.1002/gj.3049

    Article  Google Scholar 

  88. Zhang Y, Yuan C, Long X, Sun M, Huang Z, Du L, Wang X (2017b) Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: evidence for arc rifting. Gondwana Res 43:92–106. https://doi.org/10.1016/j.gr.2016.02.004

    Article  Google Scholar 

  89. Zhang F, Wang Y, Cawood PA, Dong Y (2018) Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China. J Asian Earth Sci 151:62–72. https://doi.org/10.1016/j.jseaes.2017.10.018

    Article  Google Scholar 

  90. Zhao G, Zhai M (2013) Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res 23:1207–1240. https://doi.org/10.1016/j.gr.2012.08.016

    Article  Google Scholar 

  91. Zhao G, Sun M, Wilde SA, Sanzhong L (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202. https://doi.org/10.1016/j.precamres.2004.10.002

    Article  Google Scholar 

  92. Zhao G, Wilde SA, Guo J, Cawood PA, Sun M, Li X (2010) Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambr Res 177:266–276. https://doi.org/10.1016/j.precamres.2009.12.007

    Article  Google Scholar 

  93. Zhao X, Mao J, Liu K, Li Z, Ye H, Zhou J, Hu Y (2017) Petrogenesis of the Jurassic adakitic rocks in Gan-Hang Belt South China: response to the Palaeo-Pacific Plate oblique subduction. Geol J 53:2019–2044

    Article  Google Scholar 

  94. Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta 71:5203–5225. https://doi.org/10.1016/j.gca.2007.07.028

    Article  Google Scholar 

  95. Zhu Y, Zhang L, Gu L, Guo X, Zhou J (2005) The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chin Sci Bull 50:2201–2212. https://doi.org/10.1360/03wd0154

    Article  Google Scholar 

  96. Zhu RX, Chen L, Wu FY, Liu JL (2011) Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci 54:789–797. https://doi.org/10.1007/s11430-011-4203-4

    Article  Google Scholar 

  97. Zhu M et al (2017a) Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: implications for the tectonic evolution. J Asian Earth Sci 144:54–68. https://doi.org/10.1016/j.jseaes.2017.03.025

    Article  Google Scholar 

  98. Zhu RX et al (2017b) Craton destruction and related resources. Int J Earth Sci 106:2233–2257. https://doi.org/10.1007/s00531-016-1441-x

    Article  Google Scholar 

  99. Zou H, Zhang K, Li G (2008) Cretaceous tectono-thermal event in the Ordos block: an Ar-Ar chronological evidence from basalt at Hangjin Banner, Inner Mongolia, North China Craton. Geotectonica Et Metallogenia 3:360–364 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We express our sincerely gratitude to the two anonymous reviewers for the constructive comments that substantially improved this manuscript. This work was supported by the Ministry of Science and Technology of China (2016YFC0600106) and the National Natural Science Foundation of China (41603063). We thank senior engineer Xiaoqun Hu at the Geology Bureau for Nonferrous Metals of Inner Mongolia Autonomous Region for his support in field work.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and software drawing were performed by PD and HL. The first draft of manuscript was writted by ZC. The editing and supervision of the manuscript were performed by GD. Writing–review was performed by XM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guochen Dong.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Dong, G., Mo, X. et al. Early Cretaceous bimodal volcanic rocks in the Yinshan belt, North China Craton: age, petrogenesis, and geological significance. Int J Earth Sci (Geol Rundsch) (2020). https://doi.org/10.1007/s00531-020-01895-9

Download citation

Keywords

  • Bimodal volcanic rocks
  • Petrogenesis
  • Yinshan belt
  • North China Craton