Seawater-dominated, tectonically controlled and volcanic related geothermal systems: the case of the geothermal area in the northwest of the island of Euboea (Evia), Greece

Abstract

The northwest of the island of Euboea is located in a back-arc geological position, at the western extremity of the North Anatolian Fault. In that area, several hot springs occur in three locations (Ilia, Gialtra, Aedipsos; including newly found offshore-springs) with temperatures up to 84 °C, depositing ore-grade thermogenic travertine. The geothermal system is seawater-dominated and under pressure, using the local fault systems and is related to the Plio-Pleistocene Lichades volcanic centre. The whole area could be characterized as the lateral tips of a major fault segment, with the presence of complex networks of additional fault systems leading to fault intersections. That conclusion is also supported by the travitonic data. The geothermal fluids are near neutral pH, sodium-chloride and their chemistry is controlled by: (i) high seawater participation, (ii) a deep magmatic source and (iii) chemical composition of the bedrocks. Based on all the available data, including drilling and temperature logging data, the bedrock hosting the upflow circulation of the geothermal fluid is not in hydraulic connection with cold aquifers or permeable geological formations of the area. The local metamorphic rock formations are impermeable and work as a geothermal cap. Also, Aedipsos’ vast deposit of thermogenic travertine probably acts as a second geothermal cap formation. However, at the same time, it presents serious thermal anomalies, since major geothermal fluid circulation has been identified inside its fractures. According to chemical geothermometers, the temperature of the geothermal reservoir is 140–164 °C. The typical geothermal gradients in the area are from 7.8 °C/100 m to 18.7 °C/100 m. In one case, an anomalous high geothermal gradient (53.9 °C/100 m) was found, most probably due to spatial shape diversity of the geothermal reservoir, a suggestion also supported by the estimated circulation depth of the geothermal fluid, which varies from area to area (~ 300–1800 m) and the fluid residence time (by 226Ra–222Rn method), which is around 80–100 years.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Anderberg MR (1973) Cluster Analysis for Applications. Academic Press, New York

    Google Scholar 

  2. Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. University Press, Cambridge (ISBN 978 0 521 87292 8)

    Google Scholar 

  3. Arnórsson S (2000) Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation. International Atomic Energy Agency, Vienna, p 351

    Google Scholar 

  4. Athanasoulis K, Vakalopoulos K, Xenakis M, Persianis D, Taktikos S (2009) Periodical monitoring if hot springs of Greece. I.G.M.E, Athens (in Greek)

    Google Scholar 

  5. Athanasoulis K, Vougioukalakis G, Xenakis M, Kavouri K, Kanellopoulos C, Christopoulou M, Statha F, Rigopoulos P, Spagakos N, Tsigkas Th, Papadatou M (2016) Diachronic monitoring of hot springs and geothermal fields of Greece. I.G.M.E, Athens (in Greek)

    Google Scholar 

  6. Aubouin J (1959) Contribution a l’étude géologique ‘de la Gréce septentrionale: les confins de l’Epire et de la Thessalie. Ann Géol Pays Hellen 10:1–483

    Google Scholar 

  7. Banks D, Odling NE, Skarphagen H, Rohr-Torp E (1996) Permeability and stress in crystalline rocks. Terra Nov. 8:223–235

    Article  Google Scholar 

  8. Bebout GE, Ryan JG, Leeman WP (1993) B-Be systematics in subduction-related metamorphic rocks: characterization of the subducted component. Geochim Cosmochim Acta 57(10):2227–2237

    Article  Google Scholar 

  9. Bellon H, Jarrige JJ, Sorel D (1979) Les activites magmatiques egeennes de l' Oligocene a nos jours et leurs cadres geodynamiques. Donnees nouvelles et synthese. Rev Géol Dynam Géog Phys 21:41–55

    Google Scholar 

  10. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  11. Charitakis K (1935) Healing springs and thermal bath cities of Greece. Anexartitos publ., Athens, p 16 (in Greek)

    Google Scholar 

  12. Cherdyntsev VV (1971) Uranium-234. Israel program for scientific translations, Jerusalem, p 234

    Google Scholar 

  13. Cherubini Y, Cacace M, Scheck-Wenderoth M, Moeck I, Lewerenz B (2013) Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck. Environ Earth Sci Sp. https://doi.org/10.1007/s12665-013-2519-4

    Article  Google Scholar 

  14. Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  15. Cumming W (2009) Geothermal resource conceptual models using surface exploration data. In: Proceedings 34th Workshop in Geothermal Reservoir Engineering, Stanford, 6 pp

  16. Curewitz D, Karson J (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geoth Res 79:149–168

    Article  Google Scholar 

  17. D’Alessandro W, Brusca L, Martelli M, Rizzo A, Kyriakopoulos K (2010) Geochemical characterization of natural gas manifestations in Greece. Bull Geol Soc Greece 43(5):2327–2337

    Article  Google Scholar 

  18. D’Alessandro W, Brusca L, Kyriakopoulos K, Bellomo S, Calabrese S (2014) A geochemical traverse along the “Sperchios Basin e Evoikos Gulf” graben (Central Greece): origin and evolution of the emitted fluids. Mar Pet Geol 55:295–308

    Article  Google Scholar 

  19. D’Amore F, Fancelli R, Caboi R (1987) Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia. Geothermics 16:271–282

    Article  Google Scholar 

  20. Damvergis A (1899) Hot waters in Aedipsos and the Thermae of Sylla. Blastos Publ., Athens, p 55 (in Greek)

    Google Scholar 

  21. Dotsika E (2015) H-O-C-S isotope and geochemical assessment of the geothermal area of Central Greece. J Geochem Explor 150:1–15. https://doi.org/10.1016/j.gexplo.2014.11.008

    Article  Google Scholar 

  22. Fournier RO (1973) Silica in thermal waters: laboratory and field investigations. In: Proc. International Symposium on Hydrogeochemistry and Biogeochemistry, pp. 122–139 (Tokyo)

  23. Fournier RO (1977) A review of chemical and isotopic geothermometers for the geothermal sys-tems. In: Proc. Symp. on geothermal energy, Cento Scient. Prog., Ankara, Turkey, 133-143

  24. Fournier RO (1979) A revised equation for the Na-K geothermometer. Geotherm Res Council Trans. 3:221–224

    Google Scholar 

  25. Fournier RO, Potter RW (1979) Magnesium correction to the Na-K-Ca chemical geo-thermometer. Geochim Cosmochim Acta 43:1543–1550

    Article  Google Scholar 

  26. Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  27. Fytikas M, Kolios N (1979) Preliminary heat flow map of Greece. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 197–205

    Google Scholar 

  28. Fytikas M, Giuliani O, Innocenti F, Marinelli G, Mazzuoli R (1976) Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31:T29–T34

    Article  Google Scholar 

  29. Fytikas M, Innocenti F, Manetti P, Mazzuoli R, Peccerillo A, Villari L (1985) Tertiary to Quaternary evolution of volcanism in the Aegean region, The Geological Evolution of the Eastern Mediterranean, Special Publ. Geol Soc 17:687–699

    Article  Google Scholar 

  30. Galanakis D (1997) Neotectonic and stratihraphic of the neogene-quaternary sediments of Almyros-Pagasitikos, Pilio, Oreoi-Trikeri and Maliakos basins. Ph.D. Theses, University of Thessaloniki, Greece (in Greek)

  31. Georgalas GC (1938) Le volcan des ȋles Likhades et de Hagios Ioannis (Kammena Vourla). Praktika Acad Athinion 13:86–98

    Google Scholar 

  32. Georgalas GC (1940) Über den chemismus der laven der vulkane von Lichadonissia, Wromolimni und Hagios Ioannis (Kamena Wourla). Praktika Acad Athinion 15:116

    Google Scholar 

  33. Geotermica Italiana (1984) Geotermica Italiana Methana – Poros – Loutraki – Sousaki -Platystomon - Aedipsos

  34. Gidarikos D (1938) Geological and geomorphological study of the volcanic islands of Lichades and comparison with the Oeta Mountain and the coastline. Praktika Acad Athinion 13:99–107

    Google Scholar 

  35. Giggenbach WP (1981) Geothermal mineral equilibria. Geochim Cosmochim Acta 45:393–410

    Article  Google Scholar 

  36. Giggenbach WF (1988) Geothermal solute equilibria: derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  37. Giggenbach W, Sheppard D, Robinson B (1994) Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics 23:599–644

    Article  Google Scholar 

  38. Giggenbach WF, Stewart MK, Sano Y, Goguel RL, Lyon GL (1995) Isotope and geochemical techniques applied to geothermal investigations. IAEA-TECDOC 788:209–231

    Google Scholar 

  39. Gkioni-Stavropoulou G (1983) Inventory of hot and mineral springs of Greece, I, Aegean Sea. Hydrological and Hydrogeological Investigation Report No. 39, IGME, Athens (in Greek)

  40. Gkioni-Stavropoulou G (1998) Hydrogeological study of hot and mineral springs of Euboean—Maliac gulf. IGME, Athens (in Greek)

    Google Scholar 

  41. Godinez MDC, Iturbe JL, Ordonez E, Solache-Rios M (1997) Determination of radium-226 in phosphate fertilizers and gypsum by gamma-ray spectrometry. Int J Environ Pollut 8:195–200

    Google Scholar 

  42. Goyal KP, Kassoy DFR (1980) Fault zone controlled charging of a liquid dominated geothermal reservour. J Geophys Resour 85(B4):1867–1875

    Article  Google Scholar 

  43. Grant HLJ, Hannington MD, Hardardóttir V, Fuchs SH, Schumann D (2019) Trace metal distributions in sulfide scales of the seawater-dominated Reykjanes geothermal system: constraints on sub-seafloor hydrothermal mineralizing processes and metal fluxes. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.103145

    Article  Google Scholar 

  44. Hannington M, Garbe-Schönberg D (2019) Detection of gold nanoparticles in hydrothermal fluids. Econ Geol 114(2):397–400

    Article  Google Scholar 

  45. Hannington M, Hardardóttir V, Garbe-Schönberg D, Brown KL (2016) Gold enrichment in active geothermal systems by accumulating colloidal suspensions. Nat Geosci. https://doi.org/10.1038/NGEO2661

    Article  Google Scholar 

  46. Hardardóttir V, Hannington M, Hedenquist J (2013) Metal concentrations and metal deposition in deep geothermal wells at the Reykjanes high-temperature area, Iceland. Proc Earth Planet Sci 7:338–341

    Article  Google Scholar 

  47. Hatzis M, Kavouridis Th, Bakalopoulos P, Xenakis M (2008) Investigation and determination of Northern Euboea geothermal fields. IGME, Athens (in Greek)

    Google Scholar 

  48. Henley RW, Truesdell A, Barton PBH Jr (1984) Fluid-mineral equilibrium in hydrothermal systems. In: Society of Economic Geologists, Reviews in Economic Geology, 1, p 267

  49. Hernández-Antonio A, Mahlknecht J, Tamez-Meléndez C, Ramos-Leal J, Ramírez-Orozco A, Parra R, Ornelas-Soto N, Eastoe CJ (2015) Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico). Hydrol Earth Syst Sci 19:3937–3950

    Article  Google Scholar 

  50. Hochstein MP (1988) Assessment and modelling of geothermal reservoirs (small utilization schemes). Geothermics 17(1):15–49

    Article  Google Scholar 

  51. Howarth R, Govett G (1983) Handbook of exploration geochemistry, vol. 2: statistics and data analysis in geochemical prospecting. Elsevier, Amsterdam

    Google Scholar 

  52. IAEA (2014) The Environmental Behaviour of Radium: Revised Edition. IAEA, technical reports series No. 476

  53. IGME (1957) Geological map of Pelasgia in scale 1: 50,000, by Marinos, G., Anastopoulou, I., Maratou, G., Melidoni, N., Andronopoulou, V. I.G.M.E. Athens

  54. IGME (1984) Geological map of Istiea in scale 1: 50,000, by Katsikatsos, G., Mettos, A., Vidakis, M. I.G.M.E. Athens

  55. IGME (1991) Pagasitikos sheet, in scale 1: 200,000. Surficial sediment map of the Aegean Sea floor, by Perissoratis, C., Angelopoulos, I., Mitropoulos, D., Michailidis, S. I.G.M.E. Athens

  56. Innocenti F, Agostini S, Doglioni C, Manetti P, Tonarini S (2010) Geodynamic evolution of the Aegean: constraints from the Plio-Pleistocene volcanism of the Volos-Evia area. J Geol SocLondon 167:475–489

    Article  Google Scholar 

  57. Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun J-P, Philippon M et al (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598:1–33

    Article  Google Scholar 

  58. Kanellopoulos C (2006) Geochemical research on the distribution of metallic and other elements to the groundwater in Fthiotida Prefecture and N. Euboea. Master Thesis, University of Athens, Greece (in Greek)

  59. Kanellopoulos C (2011) Geochemical research on the distribution of metallic and other elements in the cold and thermal groundwater, soils and plants in Fthiotida Prefecture and N. Euboea. Environmental impact. Ph.D. Thesis, University of Athens, Greece (in Greek with English abstract)

  60. Kanellopoulos C (2012) Distribution, lithotypes and mineralogical study of newly formed thermogenic travertines in northern Euboea and eastern central Greece. Cent Eur Geosci 4(4):545–560

    Google Scholar 

  61. Kanellopoulos C (2013) Various morphological types of thermogenic travertines in northern Euboea and eastern central Greece. In: Bull. Geol. Soc. Greece, XLVII/3, pp 1929–1938

  62. Kanellopoulos C (2014) Morphological types, lithotypes, mineralogy and possible bio-mineralization processes in simple and iron-rich travertines from active thermogenic travertine-forming systems in Greece. The cases of Northern Euboea and Eastern Central Greece. In: 19th International Sedimentological Congress-Abstracts book, p 341

  63. Kanellopoulos C, Argyraki A (2013) Geochemical impact of hot springs and ultramafic rocks on soil, groundwater and vegetation: the case of NW Euboea, Greece. In: Chemie der Erde—Geochemistry, Vol. 73, Issue 4, p. 519-532

  64. Kanellopoulos C, Mitropoulos P (2013) Geochemical effect of the rock chemistry and the anthropogenic activities on groundwater: the case of NW Euboea, Greece. In: Bull. Geol. Soc. Greece, vol. XLVII/2, p. 942-952

  65. Kanellopoulos C, Lamprinou V, Mitropoulos P, Voudouris P (2015) Thermogenic travertine deposits in Thermopylae hot springs (Greece) in association with cyanobacterial microflora. Carbonates Evapor J. https://doi.org/10.1007/s13146-015-0255-4

    Article  Google Scholar 

  66. Kanellopoulos C, Christopoulou M, Vakalopoulos P, Efthimiopoulos Xenakis THM (2016) Hydrochemical study of the hot groundwater of Ampelia area, Eastern Thessaly, Greece. A new area with geothermal interest. Greece. Bull Geol Soc Gr 5:710–719

    Google Scholar 

  67. Kanellopoulos C, Mitropoulos P, Valsami-Jones E, Voudouris P (2017a) A new terrestrial active mineralizing hydrothermal system associated with ore-bearing travertines in Greece (northern Euboea Island and Sperchios area). J Geochem Explor 179:9–24. https://doi.org/10.1016/j.gexplo.2017.05.003

    Article  Google Scholar 

  68. Kanellopoulos C, Stouraiti C, Xenakis M, Vakalopoulos P, Vougioukalakis G (2017) The geothermal system of northwestern Euboea Island and eastern Sperchios areas, Greece: Geological characteristics and suggested direct use applications. In: 11th International Hydrogeological Congress of Greece, vol. 2, 263-273

  69. Kanellopoulos C, Mitropoulos P, Argyraki A (2018a) Radiological and hydrochemical study of thermal and fresh groundwater samples of northern Euboea and Sperchios areas, Greece: insights into groundwater natural radioactivity and geology. Environ Monit Assess J 190:265. https://doi.org/10.1007/s10661-018-6643-1

    Article  Google Scholar 

  70. Kanellopoulos C, Valsami-Jones E, Voudouris P, Stouraiti C, Moritz R, Mitropoulos P (2018b) A new occurrence of terrestrial native iron in the earth’s surface: the Ilia thermogenic travertine case, northwestern Euboea, Greece. Geosci J 8:287. https://doi.org/10.3390/geosciences8080287

    Article  Google Scholar 

  71. Kanellopoulos C, Thomas C, Xirokostas N, Ariztegui D (2019a) Banded Iron Travertines at the Ilia Hot Spring (Greece): an interplay of biotic and abiotic factors leading to a modern BIF analog? Deposit Rec. https://doi.org/10.1002/dep2.55

    Article  Google Scholar 

  72. Kanellopoulos C, Vougioukalakis G, Mavrogonatos C, Megremi I, Iliopoulos I (2019b) Mineralogical, Petrological and Geochemical Study of the Agios Ioannis Volcanic Rocks, Kamena Vourla Area, Greece. Bull Geol Soc Gr 55:274–289. https://doi.org/10.12681/bgsg.21128

    Article  Google Scholar 

  73. Karastathis V, Mouzakiotis E (2014) Combined onshore and offshore seismic investigations image fault structure at the geothermal field of Aedipsos-Yaltra, central Greece. EAG, First Break 32:61–65

    Google Scholar 

  74. Karastathis VK, Papoulia J, Di Fiore B, Makris J, Tsambas A, Stampolidis A, Papadopoulos GA (2011) Deep structure investigations of the geothermal field of the North Euboean Gulf, Greece, using 3-D local earthquake tomography and Curie Point Depth analysis. J Volcanol Geoth Res 206:106–120

    Article  Google Scholar 

  75. Kati M, Voudouris P, Valsami-Jones E, Magganas A, Baltatzis E, Kanellopoulos C, Mavrogonatos K (2015) Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece. EGU 2015, Vienna, 17, EGU 2015-13046-2

  76. Katsikatsos G, Mettos A, Vidakis M, Bavay P, Panagopoulos A, Basilaki A, Papazeti E (1982) Geological study of Aedipos area—Euboea. I.G.M.E. Geothemal studies (P.E.C.), Athens (in Greek)

  77. Kelepertsis A, Tziritis E, Kelepertzis E, Leontakianakos G, Pallas K (2009) Hydrogeochemical characteristics and genetic implications of Edipsos thermal springs, north Euboea, Greece. Cent Eur J Geosci 1:241–250

    Google Scholar 

  78. Kharaka Y (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins. Springer-Verlag, New York, pp 99–117

    Google Scholar 

  79. Kilias SP, Nomikou P, Papanikolaou D, Polymenakou PN, Godelitsas A, Argyraki A, Carey S, Gamaletsos P, Mertzimekis TJ, Stathopoulou E, Goettlicher J, Steininger R, Betzelou K, Livanos I, Christakis C, Bell KC, Scoullos M (2013) New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Nat Sci Rep 3:2421

    Article  Google Scholar 

  80. Kouskoukis K (2014) Healing tourism—Thermalism. Kafkas publ, Athens, p 290

    Google Scholar 

  81. Kranis H (1999) Neotectonic activity of Fault Zones in central-eastern mainland Greece (Lokris). Ph.D. Thesis, University of Athens, Greece (in Greek)

  82. Lambrakis N, Kallergis G (2005) Contribution to the study of Greek thermal springs: hydrogeological and hydrochemical characteristics and origin of thermal waters. J Hydrogeol 13:506–521

    Article  Google Scholar 

  83. Landerer X (1836) Description of Ypati, Aedipsos and Thermopylae hot springs. Royal Printing Office (in Greek)

  84. Lindsey CR, Neupane G, Spycher N, Fairley JP, Dobson P, Wood T, McLing T, Conra M (2018) Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas. Geothermics 72:358–370

    Article  Google Scholar 

  85. Liu C-W, Lin K-H, Kuo Y-M (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89

    Article  Google Scholar 

  86. Liu Y, Zhou X, Deng Z, Fang B, Tsutomu Y, Zhao J, Wang X (2015) Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China. Geothermics 53:38–45

    Article  Google Scholar 

  87. Lopez R, Garcia-Talavera M, Pardo R, Deban L, Nalda JC (2004) Natural radiation doses to the population in a granitic region in Spain. Radiat Prot Dos 111(1):83–88

    Article  Google Scholar 

  88. Magri F, Akar T, Gemici U, Pekdeger A (2010) Deep geothermal groundwater flow in the Seferihisar-Balcova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids 10:388–405

    Article  Google Scholar 

  89. Margomenou-Leonidopoulou G (1976) Preliminary report of the research of Aidipsos thermometallic waters. In: Proc. of the International Congress on Thermal Waters. Geothermal Energy and Volcanism of the Mediterranean area, Athens, pp 340–351

  90. Marini L, Fiebig J (2005) Fluid geochemistry of the magmatic-hydrothermal system of Nisyros (Greece). In: Hunziker, J.C., Marini, L. (Eds.), The Geology, Geochemistry and Evolution of Nisyros Volcano (Greece). Implications for the Volcanic Hazards. Memoires de Géologie (Lausanne), 44, 121–163

  91. Marques JM, Carreira PM, Marques JE, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2011) The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review. Geosci J 14:423–442

    Article  Google Scholar 

  92. McGarth AG, Davison I (1995) Damage zone geometry around fault tips. J Struct Geol 17:1011–1024

    Article  Google Scholar 

  93. McGuinness M, White S, Young R, Ishizaki H, Ikeuchi K, Yoshida Y (1995) A model of the Kakkonda geothermal reservoir. Geothermics 24:1–48

    Article  Google Scholar 

  94. McKenzie D (1970) Plate tectonics of the Mediterranean Region. Nature 226:239–242

    Article  Google Scholar 

  95. McKenzie D (1972) Active tectonics of the Alpide—Himalayan belt: the Aegean Sea and surrounding regions (Tectonics of the Aegean Region). Geophys J R Astron Soc. 55:217–254

    Article  Google Scholar 

  96. Mitropoulos P, Kita I (1997) Geochemistry of oxygen and hydrogen isotopes in Greek regional waters. In: Proc 4th Hydrogeol. Congr., Hydrogeol. Commission of Greece

  97. Mountrakis D (1986) The Pelagonian zone in Greece: A polyphase deformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the Eastern

  98. Nicholson K (1993) Geothermal fluids chemistry and exploration techniques. Springer-Verlag, Berlin

    Google Scholar 

  99. Ninkovich D, Hays JD (1972) Mediterranean island arcs and origin of high potash volcanoes. Earth Planet Sci Lett 16:331–345

    Article  Google Scholar 

  100. Oliver MA (1990) Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Syst 4:313–332

    Article  Google Scholar 

  101. Orfanos G (1985) Inventory of hot and mineral springs of Greece, Peloponnesus, Zakynthos, Kythira. Hydrological and Hydrogeological Investigation Report No. 39, IGME, Athens (in Greek)

  102. Palmer CD, Ohly SR, Smith RW, Neupane G, McLing T, Mattson E (2014) Mineral selection for multicomponent equilibrium geothermometry. Transactions-Geothermal Resources Council 38

  103. Pantosti D, De Martini PM, Papanastassiou D, Palyvos N, Lemeille F, Stavrakakis G (2001) A reappraisal of the 1894 Atalanti earthquake surface ruptures, central Greece. Bull Seismol Soc Am 91(4):760–780

    Article  Google Scholar 

  104. Palyvos N (2001) Geomorphological study of the broader Atalanti area. Ph.D. Thesis, National and Kapodistrian University of Athens, p 234 (in Greek)

  105. Papanikolaou D (1939) Aedipsos. Thermal water bath therapy, Mud bath therapy, Climate therapy. Their effect on healing long lasting diseases. Ph.D., Athens University, p 67 (in Greek)

  106. Parks MM, Caliro S, Chiodini G, Pyle DM, Mather TA, Berlo K, Edmonds M, Biggs J, Nomikou P, Raptakis C (2013) Distinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn and 13C systematics: application to Santorini volcano, Greece. Earth Planet Sci Lett 377–378:180–190

    Article  Google Scholar 

  107. Pe G (1975) Strontium isotope ratios in volcanic rocks from the northwestern part of the Hellenic arc. Chem Geol 15(1):53–60

    Article  Google Scholar 

  108. Pe G, Panagos A (1976) Comparative geochemistry of the Northern Eubeoecos 26 lavas. Bull Geol Soc Greece 9:95–133 (in Greek)

    Google Scholar 

  109. Pe-Piper G, Piper D (1989) Spatial and temporal variation in Late Cenozoic back-arc volcanic rocks, Aegean Sea region. Tectonophysics 169(1–3):113–134

    Article  Google Scholar 

  110. Pe-Piper G, Piper D (2002) The igneous rocks of Greece, the anatomy of an orogeny. Ge-bruder Borntraeger, Berlin

    Google Scholar 

  111. Pe-Piper G, Piper DJW (2007) Neogene back-arc volcanism of the Aegean. new insights into the relationship between magmatism and tectonics. Geol Soc Am Spec Pap 418:17–31

    Google Scholar 

  112. Pertessis M (1937) Thermomineral Springs of Greece. Institute of Geology and Mineral Exploration, Report No. 24. Athens (in Greek)

  113. Price RE, Savov I, Planer-Friedrich B, Bühring SI, Amend J, Pichler T (2013) Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chem Geol 348:15–26

    Article  Google Scholar 

  114. Ring U, Glodny J, Will Th, Thomson S (2010) The Hellenic Subduction System: high-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annu Rev Earth Planet Sci 38:45–76

    Article  Google Scholar 

  115. Roberts S, Jackson J (1991) Active normal faulting in central Greece: an overview. Geol Soc Lond Sp Publ 56(1):125–142

    Article  Google Scholar 

  116. Sakellariou D, Rousakis G, Kaberi H, Kapsimalis V, Georgiou P, Kanellopoulos Th, Lykousis V (2007) Tectono-sedimentary structure and Late Quaternary evolution of the North Evia Gulf basin, central Greece: preliminary results. Bull Geol Soc Greece 40:451–462

    Article  Google Scholar 

  117. Scherreiks R (2000) Platform margin and oceanic sedimentation in a divergent and convergent plate setting (Jurassic, Pelagonian Zone, NE Evvoia, Greece). Int J Earth Sci 89:90–107

    Article  Google Scholar 

  118. Sfetsos KS (1988) Inventory of hot and mineral springs of Greece, III, Mainland Greece. Hydrological and Hydrogeological Investigation Report No. 39, IGME, Athens (in Greek)

  119. Shaw B, Jackson J (2010) Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys J Int 181:966–984

    Google Scholar 

  120. Shimizu A, Sumino H, Nagao K, Notsu K, Mitropoulos P (2005) Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J Volcanol Geotherm Res 140(4):321–339

    Article  Google Scholar 

  121. Spycher N, Peiffer L, Sonnenthal EL, Saldi G, Reed MH, Kennedy BM (2014) Integrated multicomponent solute geothermometry. Geothermics 51:113–123

    Article  Google Scholar 

  122. Stober I, Bucher K (2002) Water-rock interaction. Springer-Science and Business Media, B.V

    Google Scholar 

  123. Tassi F, Capecchiacci L, Gianninia GE Vougioukalakis, Vaselli O (2013a) Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): natural versus anthropogenic sources. Environ Pollut 180:111–121

    Article  Google Scholar 

  124. Tassi F, Vaselli O, Papazachos CB, Giannini L, Chiodini G, Vougioukalakis GE, Karagianni E, Vamvakaris D, Panagiotopoulos D (2013b) Geochemical and isotopic changes in the fumarolic and submerged gas discharges during the 2011–2012 unrest at Santorini caldera (Greece). Bull Volcanol 75:711–726

    Article  Google Scholar 

  125. Truesdell AH (1976) Summary of section III—geochemical techniques in exploration. In: Proceedings of the 2nd U.N. Symposium on the Development and Use of Geothermal Resources, San Francisco, 1, liii-lxxix

  126. Truesdell AH, Thompson JM, Coplen TB, Nehring NL, Janick CJ (1981) The origin of the Cerro Prieto geothermal brine. Geothermics 10(3/4):225–238

    Article  Google Scholar 

  127. Tzitziras A, Ilias P (1996) Geotechnical study of Loutra Edipsou peripheral road. IGME, Athens (in Greek)

    Google Scholar 

  128. Vakalopoulos P, Metaxas A, Xenakis M (2000) Research and evaluation of lignite resources in Euboea Island: Northern Euboea basin. Report of IGME, p 35 (in Greek)

  129. Valsami-Jones E, Baltatzis E, Bailey EH, Boyce AJ, Alexander JL, Magganas A, Anderson L, Waldron S, Ragnarsdottir KV (2005) The geochemistry of fluids from an active shallow submarine hydrothermal system: milos island, Hellenic Volcanic Arc. J Volcan Geother Res 148:130–151

    Article  Google Scholar 

  130. Vavassis I (2001) Geology of the Pelagonian zone in Northern Evia Island (Greece): Implications for the geodynamic evolution of the Hellenides. These de doctorat, Univ. de Lausanne, Switzerland

  131. Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592

    Article  Google Scholar 

  132. Vött A (2007) Relative sea level changes and regional tectonic evolution of seven coastal areas in NW Greece since the mid-Holocene. Quatern Sci Rev 26(7–8):894–919

    Article  Google Scholar 

  133. Voudouris KS, Lambrakis NJ, Papatheothorou G, Daskalaki P (1997) An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of NW Achaia (NW peloponnesus, Greece). Math Geol 29:43–59. https://doi.org/10.1007/BF02769619

    Article  Google Scholar 

  134. Voutetakis S, Fytikas M (1975) Study for the geothermal energy in Greece. Report No 54, I.G.M.E. Athens (in Greek)

  135. Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A (2015) Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. J Geochem Explor 159:79–92

    Article  Google Scholar 

  136. Wang J, Jin M, Jia B, Kang F (2015) Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Geothermics 57:185–195

    Article  Google Scholar 

  137. Yoshida Y, Nakazawa T, Yoshikawa H, Nakanishi T (2009) Partition coefficient of Ra in gypsum. J Radioanal Nucl Chem 280:541–545

    Article  Google Scholar 

  138. Zhou Q, Birkholzer JT, Tsang CF, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenh Gas Control 2(4):626–639

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Strategic Reference Framework (NSRF, 350913). The authors would like to thank the local authorities, the local population and especially the Director of the Public Properties Company- Aedipsos branch, Ilia Siakantari for their co-operation during the fieldwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christos Kanellopoulos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanellopoulos, C., Xenakis, M., Vakalopoulos, P. et al. Seawater-dominated, tectonically controlled and volcanic related geothermal systems: the case of the geothermal area in the northwest of the island of Euboea (Evia), Greece . Int J Earth Sci (Geol Rundsch) (2020). https://doi.org/10.1007/s00531-020-01889-7

Download citation

Keywords

  • Geothermal energy
  • Tectonically controlled geothermal system
  • Seawater dominated geothermal system
  • Volcanic related geothermal system
  • Aedipsos (Edipsos or Aidipsos)
  • NW Euboea (Evia)