Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif

Abstract

The Třebíč Pluton (TP) comprises plutonic rocks of the ‘durbachite series’, i.e., ultrapotassic biotite–amphibole quartz melasyenites–melagranites with conspicuous K-feldspar phenocrysts and abundant mafic enclaves. The TP with its satellite bodies intruded the eastern Moldanubian Zone (orogenic root of the Variscan Bohemian Massif) at c. 338 Ma. Overall, the entire TP durbachite series (SiO2 = 52–67 wt%) remains highly magnesian, reduced, and (except when strongly contaminated) metaluminous. The durbachitic rocks are markedly enriched in lithophile elements (esp. Cs, Rb, Th, U, K and Pb) and LREE; in contrast, the contents of high-field strength elements (Nb, Ta, and Ti) and Sr are much lower, resulting in conspicuous negative anomalies in Primitive mantle-normalized multielement plots. The proposed petrogenetic model requires re-enrichment of the depleted, harzburgitic lithospheric mantle by deeply subducted crustal material of the Saxothuringian lower plate, directly and/or via (U)HP melt/fluid. This process produced phlogopite-rich metasomes (phlogopite harzburgites and/or glimmerites). The metasomes re-melted soon thereafter by a short thermal pulse caused by slab break-off or decompression melting of rising diapirs of the relatively light metasomatized mantle, yielding primary ultrapotassic melts (87Sr/86Sr337 > 0.712 and \(\varepsilon_{{{\text{Nd}}}}^{337}\) ≤ 7.6). Upon their passage through the Moldanubian upper plate, ultrapotassic primary magmas mixed with felsic anatectic melts (87Sr/86Sr337 < 0.710; \(\varepsilon_{{{\text{Nd}}}}^{337}\) > – 6.5). K-feldspar-driven fractional crystallization ± accumulation represented only a late modifying influence. The occurrence of such ultrapotassic enriched/crustally contaminated mantle-derived magmatism complicates any conventional mass-balance assessments of relative roles of crustal recycling vs. growth in hot collisional orogens, e.g., Variscides or Himalayas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abdelfadil K, Romer RL, Seifert T, Lobst R (2013) Calc-alkaline lamprophyres from Lusatia (Germany)—evidence for a repeatedly enriched mantle source. Chem Geol 353:230–245

    Article  Google Scholar 

  2. Ackerman L, Jelínek E, Medaris LG Jr, Ježek J, Siebel W, Strnad L (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt–rock reactions. Chem Geol 259:152–167

    Article  Google Scholar 

  3. Ackerman L, Bizimis M, Haluzová E, Sláma J, Svojtka M, Hirajima T, Erban V (2016) Re–Os and Lu–Hf isotopic constraints on the formation and age of mantle pyroxenites from the Bohemian Massif. Lithos 256–257:197–210

    Article  Google Scholar 

  4. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:213–227

    Article  Google Scholar 

  5. Beard BL, Medaris LG Jr, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111:468–483

    Article  Google Scholar 

  6. Becker H (1996a) Geochemistry of garnet peridotite massifs from lower Austria and the composition of deep lithosphere beneath a Palaeozoic convergent plate margin. Chem Geol 134:49–65

    Article  Google Scholar 

  7. Becker H (1996b) Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from Lower Austria. J Petrol 37:785–810

    Article  Google Scholar 

  8. Becker H (1997) Sm–Nd garnet ages and cooling history of high-temperature garnet peridotite massifs and high-pressure granulites from lower Austria. Contrib Mineral Petrol 127:224–236

    Google Scholar 

  9. Becker H, Wenzel T, Volker F (1999) Geochemistry of glimmerite veins in peridotites from Lower Austria—implications for the origin of K-rich magmas in collision zones. J Petrol 40:315–338

    Article  Google Scholar 

  10. Bergman SC (1987) Lamproites and other potassium-rich rocks: a review of their occurrence, mineralogy, and geochemistry. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geological Society of London, Special Publications 30, pp 103–190

  11. Bonin B, Janoušek V, Moyen JF (2020) Chemical variation, modal composition and classification of granitoids. In: Janoušek V, Bonin B, Collins WJ, Farina F, Bowden P (eds) Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments. Geological Society, London, Special Publications 491, pp 9–51

  12. Borghini A, Ferrero S, Wunder B, Laurent O, O’Brien PJ, Ziemann MA (2018) Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite. Geology 46:1007–1010

    Google Scholar 

  13. Borghini A, Ferrero S, O’Brien PJ, Laurent O, Günter C, Ziemann MA (2020) Cryptic metasomatic agent measured in situ in Variscan mantle rocks: melt inclusions in garnet of eclogite, Granulitgebirge, Germany. J Metamorph Geol 38:207–234

    Article  Google Scholar 

  14. Bowes DR, Košler J (1993) Geochemical comparison of the subvolcanic appinite suite of the British Caledonides and the durbachite suite of the Central European Hercynides: evidence for associated shoshonitic and granitic magmatism. Mineral Petrol 48:47–63

    Article  Google Scholar 

  15. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  16. Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116

    Article  Google Scholar 

  17. Breiter K (2008) Durbachites of the Třebíč Pluton—genetic implications. Zpr geol Výzk v Roce 2007:143–147 (in Czech with English abstract)

    Google Scholar 

  18. Brueckner HK, Medaris LG Jr, Bakun-Czubarow N (1991) Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neu Jb Mineral Abh 163:169–196

    Google Scholar 

  19. Bubeníček J (1968) Geology and petrography of the Třebíč Massif. Sbor geol Věd Geol 13:133–164 (in Czech with English abstract)

    Google Scholar 

  20. Bukovská Z, Soejono I, Vondrovic L, Vavro M, Souček K, Buriánek D, Dobeš P, Švagera O, Waclawik P, Řihošek J, Verner K, Sláma J, Vavro L, Koníček P, Staš L, Pécskay Z, Veselovský F (2019) Characterization and 3D visualization of underground research facility for deep geological repository experiments: a case study of underground research facility Bukov, Czech Republic. Eng Geol 259:105186

    Article  Google Scholar 

  21. Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–196

    Article  Google Scholar 

  22. Burian A (2014) The granitoids from the Niemcza Zone—the NE continuation of the Variscan “durbachite belt”? Unpublished MSci. Thesis, Masaryk University, Brno (in Czech with English abstract)

  23. Buriánek D (2008) Peraluminous granite from the southern edge of the Třebíč Pluton. Acta Mus Moraviae Sci Geol 93:151–167 (in Czech with English abstract)

    Google Scholar 

  24. Büttner SH (2007) Late Variscan stress-field rotation initiating escape tectonics in the south-western Bohemian Massif: a far field response to late-orogenic extension. J Geosci 52:29–43

    Google Scholar 

  25. Cháb J, Straník Z, Eliáš M (2007) Geological map of the Czech Republic 1: 500 000. Czech Geological Survey, Prague

    Google Scholar 

  26. Conticelli S, Avanzinelli R, Ammannati E, Casalini M (2015) The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos 232:174–196

    Article  Google Scholar 

  27. Cooke RA, O’Brien PJ (2001) Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria. Lithos 58:33–54

    Article  Google Scholar 

  28. Corfu F (2013) A century of U–Pb geochronology: the long quest towards concordance. Geol Soc Am Bull 125:33–47

    Article  Google Scholar 

  29. Couzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P, Villaros A (2016) Post-collisional magmatism: crustal growth not identified by zircon Hf–O isotopes. Earth Planet Sci Lett 456:182–195

    Article  Google Scholar 

  30. Čadková Z, Jakeš P, Haková M, Mrázek P (1985) Geochemical catalogue of the basic network. In: Lithogeochemical Database of the Czech Geological Survey, Prague

  31. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  32. Čopjaková R, Kotková J (2018) Composition of barian mica in multiphase solid inclusions from orogenic garnet peridotites as evidence of mantle metasomatism in a subduction zone setting. Contrib Mineral Petrol 173:106

    Article  Google Scholar 

  33. Čopjaková R, Sulovský P, Paterson BA (2005) Major and trace elements in pyrope–almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif. Lithos 82:51–70

    Article  Google Scholar 

  34. Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  35. Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149

    Article  Google Scholar 

  36. Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Minéral 111:493–510

    Article  Google Scholar 

  37. Dempírová L (2010) The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the CGS. Zpr geol Výzk v Roce 2009:326–330 (in Czech with English abstract)

    Google Scholar 

  38. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  39. DePaolo DJ (1985) Isotopic studies of processes in mafic magma chambers: I. The Kiglapait Intrusion, Labrador. J Petrol 26:925–951

    Article  Google Scholar 

  40. Dickin AP (2005) Radiogenic isotope geology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  41. Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 19–24

    Google Scholar 

  42. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325

    Article  Google Scholar 

  43. Dosbaba M, Sulovský P (2006) Geological position, petrology and geochemistry of durbachite bodies in the vicinity of Nové Město na Moravě. Acta Mus Moraviae Sci geol 91:177–190 (in Czech with English abstract)

    Google Scholar 

  44. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  45. Dudek A, Matějovská O, Suk M (1974) Gföhl orthogneiss in the Moldanubicum of Bohemia and Moravia. Krystalinikum 10:67–78

    Google Scholar 

  46. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc Lond 160:209–218

    Article  Google Scholar 

  47. Faryad SW (2011) Distribution and geological position of high-/ultrahigh-pressure units within the European Variscan Belt: a review. In: Dobrzhinetskaya LF, Faryad SW, Wallis S, Cuthbert S (eds) Ultrahigh-pressure metamorphism: 25 years after the discovery of coesite and diamond. Elsevier, Amsterdam, pp 361–397

    Google Scholar 

  48. Faryad SW, Jedlička R, Collett S (2013a) Eclogite facies rocks of the Monotonous Unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif). Lithos 179:353–363

    Article  Google Scholar 

  49. Faryad SW, Jedlička R, Ettinger K (2013b) Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: example from the Bohemian Massif. Gondwana Res 23:944–955

    Article  Google Scholar 

  50. Faure G, Mensing TM (2004) Isotopes: principles and applications. Wiley, New Jersey

    Google Scholar 

  51. Ferrero S, O’Brien PJ, Borghini A, Wunder B, Wälle M, Günter C, Ziemann MA (2018) A treasure chest full of nanogranitoids: an archive to investigate crustal melting in the Bohemian Massif. In: Ferrero S, Lanari P, Goncalves P, Grosch EG (eds) Metamorphic geology: microscale to mountain belts. Geological Society, London, Special Publications 478, pp 13–38

  52. Fiala J, Vaňková V, Wenzlová M (1983) Radioactivity of selected durbachites and syenites of the Bohemian Massif. Čas Mineral Geol 28:1–16

    Google Scholar 

  53. Fiala J, Matějovská O, Vaňková V (1987) Moldanubian granulites and related rocks: petrology, geochemistry, and radioactivity. Rozpr Čs Akad Věd ř mat přír Věd 97:1–102

    Google Scholar 

  54. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  55. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28

    Google Scholar 

  56. Finger F, Dunkley DJ, René M (2010) Remnants of Early Carboniferous I-type granodiorite plutons in the Bavarian Forest and their bearing on the tectonic interpretation of the south-western sector of the Bohemian Massif (Bavarian Zone). J Geosci 55:321–332

    Google Scholar 

  57. Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Article  Google Scholar 

  58. Foley SF, Venturelli G, Green DH, Toscani L (1987) Ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Article  Google Scholar 

  59. Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283

    Article  Google Scholar 

  60. Förster MW, Prelević D, Schmück HR, Buhre S, Veter M, Mertz-Kraus R, Foley SF, Jacob DE (2017) Melting and dynamic metasomatism of mixed harzburgite + glimmerite mantle source: implications for the genesis of orogenic potassic magmas. Chem Geol 455:182–191

    Article  Google Scholar 

  61. Förster MW, Prelević D, Buhre S, Mertz-Kraus R, Foley SF (2019) An experimental study of the role of partial melts of sediments versus mantle melts in the sources of potassic magmatism. J Asian Earth Sci 177:76–88

    Article  Google Scholar 

  62. Fowler MB, Rollinson HR (2012) Phanerozoic sanukitoids from Caledonian Scotland: implications for Archean subduction. Geology 40:1079–1082

    Article  Google Scholar 

  63. Fowler MB, Kocks H, Darbyshire DPF, Greenwood PB (2008) Petrogenesis of high Ba–Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos 105:129–148

    Article  Google Scholar 

  64. Franěk J, Schulmann K, Lexa O, Tomek Č, Edel JB (2011) Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. J Metamorph Geol 29:53–78

    Article  Google Scholar 

  65. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications 179, pp 35–61

  66. Friedl G, von Quadt A, Finger F (1992) Erste Ergebnisse von U/Pb-Altersdatierungbearbeiten am Rastenberger Granodiorit im Niederösterreichischen Waldviertel. Mitt Österr mineral Gesell 137:131–143

    Google Scholar 

  67. Friedl G, von Quadt A, Finger F (1996) Timing der Intrusionstätigkeit im Südböhmischen Batholith. Symposion ‘Tektonik-Strukturgeologie-Kristallingeologie’, Salzburg, 10–15 April 1996, book of abstracts. Fakultas Universitätsverlag, Vienna, pp 127–130

  68. Ge RF, Wilde SA, Nemchin AA, Whitehouse MJ, Bellucci JJ, Erickson TM (2019) Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia. Earth Planet Sci Lett 517:38–49

    Article  Google Scholar 

  69. Gerdes A (2001) Magma homogenization during anatexis, ascent and/or emplacement? Constraints from the Variscan Weinsberg granites. Terra Nova 13:305–312

    Article  Google Scholar 

  70. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  71. Gerdes A, Wörner G, Finger F (2000a) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society, London, Special Publications 179, pp 415–431

  72. Gerdes A, Wörner G, Henk A (2000b) Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc Lond 157:577–587

    Article  Google Scholar 

  73. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54

    Google Scholar 

  74. Goliáš V (1995) Radioactive accessory minerals of the Třebíč Massif. Bull Mineral Petrol Odd Nár Muz (Praha) 3:56–61 (in Czech)

    Google Scholar 

  75. Gürtlerová P, Čadek J, Čadková Z, Mrázek P, Adamová M, Dušek P (1997) Database of analytical determinations on maps of rock geochemical reactivity 1:50000. In: Lithogeochemical Database of the Czech Geological Survey, Prague

  76. Guy A, Edel JB, Schulmann K, Tomek Č, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157

    Article  Google Scholar 

  77. Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Article  Google Scholar 

  78. Hajná J, Žák J, Kachlík V, Chadima M (2012) Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian Unit, Bohemian Massif. Int J Earth Sci 101:1855–1873

    Article  Google Scholar 

  79. Hajná J, Žák J, Dörr W, Kachlík V, Sláma J (2018) New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana. Precambr Res 317:159–178

    Article  Google Scholar 

  80. Hanžl P, Janoušek V, Soejono I, Buriánek D, Svojtka M, Hrdličková K, Erban V, Pin C (2019) The rise of the Brunovistulicum: age, geology, petrology and geochemical character of the Neoproterozoic magmatic rocks of the Central Basic Belt of the Brno Massif. Int J Earth Sci 108:1165–1199

    Article  Google Scholar 

  81. Hasalová P, Štípská P, Powell R, Schulmann K, Janoušek V, Lexa O (2008) Transforming mylonitic metagranite by open-system interactions during melt flow. J Metamorph Geol 26:55–80

    Article  Google Scholar 

  82. Hermann J, Rubatto D (2014) Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 309–340

    Google Scholar 

  83. Holub FV (1977) Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. Tschermaks mineral petrogr Mitt 24:133–150

    Article  Google Scholar 

  84. Holub FV (1989) Durbachite. Petrology. In: Bowes DR (ed) The encyclopedia of igneous and metamorphic petrology. Springer US, Boston, pp 133–134

    Google Scholar 

  85. Holub FV (1990) Petrogenetic interpretation of potassic lamproid magmas of the Bohemian Massif. Unpublished PhD. thesis, Charles University, Prague (in Czech)

  86. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor geol Věd ložisk Geol Mineral 31:5–26

    Google Scholar 

  87. Holub FV, Cocherie A, Rossi P (1997a) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary. C R Acad Sci Ser IIa Sci Terre Planets 325:19–26

    Google Scholar 

  88. Holub FV, Machart J, Manová M (1997b) The Central Bohemian Plutonic complex: geology, chemical composition and genetic interpretation. Sbor geol Věd ložisk Geol Mineral 31:27–50

    Google Scholar 

  89. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry, vol 53, Washington, pp 27–62

  90. Houzar S, Novák M (2006) Clintonite-bearing assemblages in chondrodite marbles from the contact aureole of the Třebíč Pluton, Moldanubian Zone, Bohemian Massif. J Czech Geol Soc 51:249–258

    Google Scholar 

  91. Hrouda F, Táborská Š, Schulmann K, Ježek J, Dolejš D (1999) Magnetic fabric and rheology of co-mingled magmas in the Nasavrky Plutonic Complex (E Bohemia): implications for intrusive strain regime and emplacement mechanism. Tectonophysics 307:93–111

    Article  Google Scholar 

  92. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  93. Jakeš P (1968) Variation of the chemical and modal composition of the Tábor Massif. Čas Mineral Geol 13:63–73 (in Czech with English abstract)

    Google Scholar 

  94. Janoušek V, Holub FV (2007) The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86

    Article  Google Scholar 

  95. Janoušek V, Moyen JF (2014) Mass balance modelling of magmatic processes in GCDkit. In: Kumar S, Singh RN (eds) Modelling of magmatic and allied processes. Society of earth scientists series, vol 83, Springer, Berlin, pp 225–238

  96. Janoušek V, Rogers G, Bowes DR (1995) Sr–Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534

    Article  Google Scholar 

  97. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543

    Article  Google Scholar 

  98. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004a) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99

    Article  Google Scholar 

  99. Janoušek V, Finger F, Roberts M, Frýda J, Pin C, Dolejš D (2004b) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. In: Ishihara S, Stephens WE, Harley SL, Arima M, Nakajima T (eds) Fifth Hutton symposium on the origin of granites and related rocks. Geological Society of America Special Papers 389, pp 141–159

  100. Janoušek V, Erban V, Farrow CM (2006a) Using the R language for graphical presentation and interpretation of compositional data in mineralogy: introducing the package GCDkit-Mineral. useR! 2006 Book of Abstracts. Austrian Association for Statistical Computing (AASC) and Wirtschaftsuniversität Wien, Vienna, p 84

  101. Janoušek V, Farrow CM, Erban V (2006b) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Article  Google Scholar 

  102. Janoušek V, Gerdes A, Vrána S, Finger F, Erban V, Friedl G, Braithwaite CJR (2006c) Low-pressure granulites of the Lišov Massif, Southern Bohemia: Viséan metamorphism of Late Devonian plutonic arc rocks. J Petrol 47:705–744

    Article  Google Scholar 

  103. Janoušek V, Wiegand B, Žák J (2010a) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc Lond 167:347–360

    Article  Google Scholar 

  104. Janoušek V, Holub FV, Magna T, Erban V (2010b) Isotopic constraints on the petrogenesis of the Variscan ultrapotassic magmas from the Moldanubian Zone of the Bohemian Massif. Mineralogia Special Papers 37:32–36

  105. Janoušek V, Trubač J, Dörr W, Gerdes A, Moyen JF, Žák J, Matějka D (2015) Extensive post-collisional melting in a mid-crustal gneiss dome—case of the Variscan Melechov Pluton, Moldanubian Batholith. Goldschmidt Abstracts, pp 1421

  106. Janoušek V, Moyen JF, Martin H, Erban V, Farrow C (2016) Geochemical modelling of igneous processes—principles and recipes in R Language. Bringing the Power of R to a Geochemical Community. Springer-Verlag, Berlin, Heidelberg

  107. Janoušek V, Holub FV, Verner K, Čopjaková R, Gerdes A, Hora JM, Košler J, Tyrrell S (2019) Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source. Lithos 342–343:239–262

    Article  Google Scholar 

  108. Jedlička R, Faryad SW, Hauzenberger C (2015) Prograde metamorphic history of UHP granulites from the Moldanubian Zone (Bohemian Massif) revealed by major element and Y+REE zoning in garnets. J Petrol 56:2069–2088

    Article  Google Scholar 

  109. Jokubauskas P, Bagiński B, MacDonald R, Krzemińska E (2017) Multiphase magmatic activity in the Variscan Kłodzko–Złoty Stok intrusion, Polish Sudetes: evidence from SHRIMP U–-Pb zircon ages. Int J Earth Sci 107:1623–1639

    Article  Google Scholar 

  110. Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerische Wald (Variscan Belt, Germany). J Petrol 40:601–627

    Article  Google Scholar 

  111. Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163

    Article  Google Scholar 

  112. Kelemen PB, Behn MD (2016) Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat Geosci 9:197–205

    Article  Google Scholar 

  113. Klomínský J, Jarchovský T, Rajpoot GS (2010) The atlas of plutonic rocks and orthogneisses in the Bohemian Massif. Czech Geological Survey, Prague

    Google Scholar 

  114. Klötzli US (1997) Single zircon evaporation thermal ionization mass spectrometry: method and procedures. Analyst 122:1239–1248

    Article  Google Scholar 

  115. Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214

    Article  Google Scholar 

  116. Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Article  Google Scholar 

  117. Košler J, Forst L, Sláma J (2008) Appendix A4: LAMDATE and LAMTOOL: Spreadsheet-based data reduction for laser-ablation ICP-MS. In: Sylvester P (ed) Laser ablation–ICP–MS in the Earth sciences. Mineralogical Association of Canada Short Courses 40, pp 315–317

  118. Kotková J, Gerdes A, Parrish RR, Novák M (2007) Clasts of Variscan high-grade rocks within Upper Visean conglomerates—constraints on exhumation history from petrology and U–Pb chronology. J Metamorph Geol 25:781–801

    Article  Google Scholar 

  119. Kotková J, Schaltegger U, Leichmann J (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif—coeval intrusions at different crustal levels. Lithos 115:163–176

    Article  Google Scholar 

  120. Kotková J, O’Brien PJ, Ziemann MA (2011) Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma. Geology 39:667–670

    Article  Google Scholar 

  121. Kotková J, Škoda R, Machovič V (2014) Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif. Am Mineral 99:1798–1801

    Article  Google Scholar 

  122. Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde 67:151–174

    Article  Google Scholar 

  123. Krmíček L, Romer RL, Ulrych J, Glodny J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr–Nd–Pb–Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res 35:198–216

    Article  Google Scholar 

  124. Kroner U, Goerz I (2010) Variscan assembling of the Allochtonous Domain of the Saxo-Thuringian Zone—a tectonic model. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 271–286

    Google Scholar 

  125. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan Orogeny reconsidered. Gondwana Res 24:298–329

    Article  Google Scholar 

  126. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U–Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266

    Article  Google Scholar 

  127. Kubínová Š, Faryad SW (2019) Mineral textures of olivine minette and their significance for crystallization history of parental magma; an example from the Moldanubian Zone (the Bohemian Massif). Mineral Petrol 113:477–491

    Article  Google Scholar 

  128. Kubínová Š, Faryad SW, Verner K, Schmitz MD, Holub FV (2017) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan Orogeny in the Bohemian Massif. Lithos 272–273:205–221

    Article  Google Scholar 

  129. Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, Ulrich S (2015) Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic). J Geol Soc Lond 172:479–490

    Article  Google Scholar 

  130. Kusiak MA, Dunkley DJ, Suzuki K, Kachlík V, Kedzior A, Lekki J, Opluštil S (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon—a case study of durbachite from the Třebíč Pluton, Bohemian Massif. Gondwana Res 17:153–161

    Article  Google Scholar 

  131. Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392

    Article  Google Scholar 

  132. Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Štípská P (2014) The Moldanubian Zone in French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: extent, timescale and the formation of the European crust. Geological Society, London, Special Publications 405, pp 7–44

  133. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith JC, Stephenson NCN, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321

    Article  Google Scholar 

  134. Leichmann J, Gawęda A (2002) Niemcza Zone granitoids—durbachites in Sudetes. Geolines 14:60–60

    Google Scholar 

  135. Leichmann J, Novák M, Buriánek D, Burger D (2007) High-temperature to ultrahigh-temperature metamorphism related to multiple ultrapotassic intrusions: evidence from garnet–sillimanite–cordierite kinzigite and garnet–orthopyroxene migmatites in the eastern part of the Moldanubian Zone (Bohemian Massif). Geol Carpath 58:415–425

    Google Scholar 

  136. Leichmann J, Gnojek I, Novák M, Sedlák J, Houzar S (2017) Durbachites from the eastern Moldanubicum (Bohemian Massif): erosional relics of large, flat tabular intrusions of ultrapotassic melts—geophysical and petrological record. Int J Earth Sci 106:59–77

    Article  Google Scholar 

  137. Lexa O, Schulmann K, Hrouda F, Ulrich S, Konopásek J, Štípská P, Ježek J (2007) Coupling between multiple magmatic fabrics of the Třebíč syenite and exhumation of orogenic lower crust. In: Venera Z (eds) CzechTec 07, 5th Meeting of the Central European Tectonic Studies Group (CETeG) and 12th Meeting of the Czech Tectonic Studies Group (CTS). Czech Geological Survey, Prague, pp 52–53

  138. Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J Metamorph Geol 29:79–102

    Article  Google Scholar 

  139. Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons in Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 76:41–55

    Article  Google Scholar 

  140. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  141. Maierová P, Schulmann K, Lexa O, Guillot S, Štípská P, Janoušek V, Čadek O (2016) European Variscan orogenic evolution as an analogue of Tibetan-Himalayan Orogen: insights from petrology and numerical modeling. Tectonics 35:1760–1780

    Article  Google Scholar 

  142. Martin H, Moyen JF, Rapp R (2009) The sanukitoid series: magmatism at the Archaean–Proterozoic transition. Earth Environ Sci Trans R Soc Edinb 100:15–33

    Google Scholar 

  143. Massonne HJ (2001) First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany. Eur J Mineral 13:565–570

    Article  Google Scholar 

  144. Massonne HJ, Fockenberg T (2012) Melting of metasedimentary rocks at ultrahigh pressure—insights from experiments and thermodynamic calculations. Lithosphere 4:269–285

    Article  Google Scholar 

  145. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  146. Medaris LG Jr, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E, Mísař Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489–505

    Article  Google Scholar 

  147. Medaris LG Jr, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82:1–23

    Article  Google Scholar 

  148. Medaris LG Jr, Beard BL, Jelínek E (2006) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl nappe, Bohemian Massif: a geochemical review, new P–T determinations, and tectonic interpretation. Int Geol Review 48:765–777

    Article  Google Scholar 

  149. Medaris LG Jr, Ackerman L, Jelínek E, Toy V, Siebel W, Tikoff B (2009) The Sklené garnet peridotite: petrology, geochemistry, and structure of a mantle-derived boudin in Moldanubian granulite. J Geosci 54:301–323

    Google Scholar 

  150. Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25

    Article  Google Scholar 

  151. Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226

    Google Scholar 

  152. Mikulski SZ, Williams IS, Bagiński B (2013) Early Carboniferous (Viséan) emplacement of the collisional Kłodzko–Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U–Pb ages. Int J Earth Sci 102:1007–1027

    Article  Google Scholar 

  153. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  154. Müller D, Groves D (1995) Potassic igneous rocks and associated gold-copper mineralization. Springer, Berlin

    Google Scholar 

  155. Murphy JB (2020) Appinite suites and their genetic relationship with coeval voluminous granitoid batholiths. Int Geol Review 62:683–713

    Article  Google Scholar 

  156. Naemura K, Hirajima T, Svojtka M (2009) The pressure–temperature path and the origin of phlogopite in spinel–garnet peridotites from the Blanský les Massif of the Moldanubian Zone, Czech Republic. J Petrol 50:1795–1827

    Article  Google Scholar 

  157. Naemura K, Hirajima T, Svojtka M, Shimizu I, Iizuka T (2018) Fossilized melts in mantle wedge peridotites. Sci Rep 8:10116

    Article  Google Scholar 

  158. Nahodilová R, Hasalová P, Štípská P, Schulmann K, Závada P, Míková J, Kylander-Clark ARC, Maierová P (2020) Exhumation of subducted continental crust along the arc region. Gondwana Res 80:157–187

    Article  Google Scholar 

  159. Nasdala L, Massonne HJ (2000) Microdiamonds from the Saxonian Erzgebirge, Germany; in situ micro-Raman characterisation. Eur J Mineral 12:495–498

    Article  Google Scholar 

  160. Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U–Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carol Geol 42:309–310

    Google Scholar 

  161. Novák M, Gadas P, Cempírek J, Škoda R, Breiter K, Čopjaková R, Kadlec T, Loun J, Toman J (2015) B.1 Granitic pegmatites of the Moldanubian Zone, Czech Republic. In: Gadas P, Novák M, Szuszkiewicz A, Cempírek J (eds) PEG 2015, 7th International Symposium on Granitic Pegmatites, Ksiąź, Poland, June 17–19, 2015. Field trip guidebook. Tigris, Zlín, pp 13–72

  162. Novella D, Frost DJ (2014) The composition of hydrous partial melts of garnet peridotite at 6 GPa: implications for the origin of group II kimberlites. J Petrol 55:2097–2124

    Article  Google Scholar 

  163. O’Brien PJ (2006) Type-locality granulites: high-pressure rocks formed at eclogite-facies conditions. Mineral Petrol 86:161–175

    Article  Google Scholar 

  164. O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20

    Article  Google Scholar 

  165. O’Hara MJ (1977) Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 266:503–507

    Article  Google Scholar 

  166. O’Hara MJ, Matthews RE (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc Lond 138:237–277

    Article  Google Scholar 

  167. Oliver GJH, Corfu F, Krogh TE (1993) U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc Lond 150:355–369

    Article  Google Scholar 

  168. Palmer MR, Ersoy EY, Akal C, Uysal I, Genç Ş, Banks LA, Cooper MJ, Milton JA, Zhao KD (2019) A short, sharp pulse of potassium-rich volcanism during continental collision and subduction. Geology 47:1079–1082

    Article  Google Scholar 

  169. Papike JJ, Cameron KL, Baldwin K (1974) Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol Soc Am Abstr Programs 6:1053–1054

    Google Scholar 

  170. Parat F, Holtz F, René M, Almeev R (2010) Experimental constraints on ultrapotassic magmatism from the Bohemian Massif (durbachite series, Czech Republic). Contrib Mineral Petrol 159:331–347

    Article  Google Scholar 

  171. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363

    Article  Google Scholar 

  172. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  173. Perraki M, Faryad SW (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202–203:157–166

    Article  Google Scholar 

  174. Pertoldová J, Verner K, Vrána S, Buriánek D, Štědrá V, Vondrovic L (2010) Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. J Geosci 55:299–319

    Google Scholar 

  175. Pietranik A, Storey C, Kierczak J (2013) The Niemcza diorites and monzodiorites (Sudetes, SW Poland): a record of changing geotectonic setting at ca. 340 Ma. Geol Q 57:325–334

    Google Scholar 

  176. Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89

    Article  Google Scholar 

  177. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Article  Google Scholar 

  178. Prelević D, Foley SF, Romer RL, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156

    Article  Google Scholar 

  179. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 69, Washington, pp 61–120

  180. René M, Stelling J (2007) Garnet-bearing granite from the Třebíč Pluton, Bohemian Massif (Czech Republic). Mineral Petrol 91:55–69

    Article  Google Scholar 

  181. Rock NMS (1991) Lamprophyres. Blackie, Glasgow and London

    Google Scholar 

  182. Roden MF, Murthy VR (1985) Mantle metasomatism. Ann Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  183. Rossi P, Oggiano G, Cocherie A (2009) A restored section of the “southern Variscan realm” across the Corsica–Sardinia microcontinent. C R Geosci 341:244–248

    Article  Google Scholar 

  184. Sauer A (1893) Der Granitit von Durbach im nördlichen Schwarzwald und seine Grenzfacies von Glimmersyenit (Durbachit). Mitt Badischen geol Landesanst 2:233–276

    Google Scholar 

  185. Scharbert S, Veselá M (1990) Rb–Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Czech Geological Survey, Prague, pp 262–271

    Google Scholar 

  186. Schreyer W (1999) Experimental aspects of UHP metamorphism: granitic systems. Int Geol Review 41:701–710

    Article  Google Scholar 

  187. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Article  Google Scholar 

  188. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297

    Article  Google Scholar 

  189. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286

    Article  Google Scholar 

  190. Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278

    Article  Google Scholar 

  191. Schumacher JC (1997) Appendix 2. The estimation of the proportion of ferric iron in the electron-microprobe analysis of amphiboles. Can Mineral 35:238–246

    Google Scholar 

  192. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite, 2nd edn. Wiley, New York

    Google Scholar 

  193. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53

    Article  Google Scholar 

  194. Soder C, Romer RL (2018) Post-collisional potassic–ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction. J Petrol 59:1007–1034

    Article  Google Scholar 

  195. Soejono I, Janoušek V, Žáčková E, Sláma J, Konopásek J, Machek M, Hanžl P (2017) Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U–Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J Earth Sci 106:2109–2129

    Article  Google Scholar 

  196. Spencer CJ, Roberts NMW, Santosh M (2017) Growth, destruction, and preservation of Earth’s continental crust. Earth Sci Rev 172:87–106

    Article  Google Scholar 

  197. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  198. Steiger RH, Jäger E (1977) Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  199. Stepanov AS, Hermann J, Korsakov AV, Rubatto D (2014) Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions. Contrib Mineral Petrol 167:1–25

    Google Scholar 

  200. Sulovský P (2000) Comparison of chemistry of the Třebíč durbachite and other durbachites. Geol výzk Mor Slez 7:135–140 (in Czech with English abstract)

    Google Scholar 

  201. Sulovský P (2001) Accessory minerals of the Třebíč durbachite massif (SW Moravia). Miner Slov 33:467–472

    Google Scholar 

  202. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the ocean basins. Geological Society, London, Special Publications 42, pp 313–345

  203. Svojtka M, Ackerman L, Medaris LG Jr, Hegner E, Valley JW, Hirajima T, Jelínek E, Hrstka T (2016) Petrological, geochemical and Sr–Nd–O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian Zone of the Bohemian Massif. J Petrol 57:897–920

    Article  Google Scholar 

  204. Štípská P, Schulmann K, Racek M, Lardeaux JM, Hacker BR, Kylander-Clark ARC, Holder R, Košuličová M (2019) Finite pattern of Barrovian metamorphic zones: interplay between thermal reequilibration and post-peak deformation during continental collision—insights from the Svratka Dome (Bohemian Massif). Int J Earth Sci. https://doi.org/10.1007/s00531-019-01788-6

    Article  Google Scholar 

  205. Tabaud AS, Janoušek V, Skrzypek E, Schulmann K, Rossi P, Whitechurch H, Guerrot C, Paquette JL (2015) Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the southern–central Variscan Vosges Mts. (NE France). J Geol Soc Lond 172:87–102

    Article  Google Scholar 

  206. Tajčmanová L, Konopásek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central Europe. J Metamorph Geol 24:119–134

    Article  Google Scholar 

  207. Tajčmanová L, Konopásek J, Connolly JAD (2007) Diffusion-controlled development of silica-undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central Europe). Contrib Mineral Petrol 153:237–250

    Article  Google Scholar 

  208. Tappe S, Smart K, Torsvik T, Massuyeau M, de Wit M (2018) Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet Sci Lett 484:1–14

    Article  Google Scholar 

  209. Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of Central Europe. Volume 1: Precambrian and Palaeozoic. Geological Society, London, pp 665–748

    Google Scholar 

  210. Tropper P, Deibl I, Finger F, Kaindl R (2006) P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? Int J Earth Sci 95:1019–1037

    Article  Google Scholar 

  211. Tyrrell S, Haughton PDW, Daly JS, Shannon PM (2012) The Pb isotopic composition of detrital K-feldspar: a tool for constraining provenance, sedimentary processes and paleodrainage. In: Sylvester P (ed) Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada Short Courses 42, pp 203–217

  212. Urban M, Synek J (1995) Moldanubian Zone—structure. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 429–443

    Google Scholar 

  213. Valbracht PJ, Vrána S, Beetsma JJ, Fiala J, Matějka D (1994) Sr and Nd isotopic determinations in three Moldanubian granulite massifs in southern Bohemia. J Czech Geol Soc 39:114

    Google Scholar 

  214. van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108

    Article  Google Scholar 

  215. Vellmer C (1992) Stoffbestand und Petrogenese von Granuliten und granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Unpublished PhD. thesis, Georg-August-Universität Göttingen

  216. Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contrib Mineral Petrol 118:13–32

    Article  Google Scholar 

  217. Verner K, Žák J, Hrouda F, Holub FV (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567

    Article  Google Scholar 

  218. Verner K, Žák J, Nahodilová R, Holub FV (2008) Magmatic fabrics and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. Int J Earth Sci 97:19–33

    Article  Google Scholar 

  219. Verner K, Buriánek D, Vrána S, Vondrovic L, Pertoldová J, Hanžl P, Nahodilová R (2009) Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone. J Geosci 54:87–100

    Google Scholar 

  220. Verner K, Žák J, Šrámek J, Paclíková J, Zavřelová A, Machek M, Finger F, Johnson K (2014) Formation of elongated granite–migmatite domes as isostatic accommodation structures in collisional orogens. J Geodyn 73:100–117

    Article  Google Scholar 

  221. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1. https://doi.org/10.1007/s10069-000-0002-3

    Article  Google Scholar 

  222. von Raumer JF, Finger F, Veselá P, Stampfli GM (2014) Durbachites–vaugnerites—a geodynamic marker in the central European Variscan Orogen. Terra Nova 26:85–95

    Article  Google Scholar 

  223. Vrána S, Novák M (2000) Petrology and geochemistry of granulite clasts in the Visean Luleč conglomerate, Kulm in central Moravia, Czech Republic. Věst Čes geol úst 75:405–413

    Google Scholar 

  224. Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen Massif (northern Bohemian Massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86:556–570

    Article  Google Scholar 

  225. Wenzel T, Oberhänsli R, Mezger K (2000) K-rich plutonic rocks and lamprophyres from the Meissen Massif (northern Bohemian Massif): geochemical evidence for variably enriched lithospheric mantle sources. Neu Jb Mineral Abh 175:249–293

    Google Scholar 

  226. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  227. Zachovalová K, Leichmann J, Štelcl J (1999) Petrology, geochemistry and radioactivity of durbachites from Třebíč Massif along the Třebíč Fault. Acta Mus Moraviae Sci geol 84:71–88 (in Czech with English abstract)

    Google Scholar 

  228. Zeitlhofer H, Grasemann B, Petrakakis K (2016) Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria). Int J Earth Sci (Geol Rundsch) 105:1175–1197

    Article  Google Scholar 

  229. Zheng YF (2012) Metamorphic chemical geodynamics in continental subduction zones. Chem Geol 328:5–48

    Article  Google Scholar 

  230. Zheng YF, Xia QX, Chen RX, Gao XY (2011) Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev 107:342–374

    Article  Google Scholar 

  231. Žák J, Holub FV, Verner K (2005a) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94:385–400

    Article  Google Scholar 

  232. Žák J, Schulmann K, Hrouda F (2005b) Multiple magmatic fabrics in the Sázava Pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822

    Article  Google Scholar 

  233. Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá-Barrandian Unit, Bohemian Massif. Int J Earth Sci 100:1477–1495

    Article  Google Scholar 

  234. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian Unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40

    Article  Google Scholar 

  235. Žák J, Verner K, Holub FV, Kabele P, Chlupáčová M, Halodová P (2012) Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J Struct Geol 36:27–42

    Article  Google Scholar 

  236. Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: extent, timescale and the formation of the European crust. Geological Society, London, Special Publications 405, pp 169–196

  237. Žeravíková P (2014) Apatite Microchemistry of the Durbachites from the Třebíč Massif. Unpublished MSci. Thesis, Palacký University, Olomouc (in Czech with English abstract)

Download references

Acknowledgements

The manuscript was improved significantly by detailed reviews of Mike Fowler and an anonymous reviewer, and benefited from careful editorial work of Editor-in-Chief Wolf-Christian Dullo. We are indebted to V. Erban and J. Míková (CGS Prague) for technical assistance in the isotopic laboratory. S. Tyrrell (then at UCD Dublin) helped with acquisition and interpretation of the in situ Pb isotopic data, F. Veselovský and I. Soejono separated zircons and prepared mounts for dating, A. Šťastná (Charles University Prague) assisted with optical CL photography, P. Halodová and O. Pour (CGS Prague) with CL and BSE imaging of the dated zircons. We would like to thank, among others, S. Couzinié (Vandoeuvre-lès-Nancy), S. Ferrero (Potsdam), F. Finger (Salzburg), J.-F. Moyen (St. Etienne), P. O’Brien (Potsdam), K. Schulmann (CGS Prague/Strasbourg) and T. Wenzel (Tübingen) for enlightening discussions on petrogenesis of ultrapotassic magmas (not only) in the Bohemian Massif.

Funding

This work was supported by the Czech Grant Agency (GACR) project 18-24378S. Furthermore, the dataset was completed using data from the project “Evaluation of Geological and Further Information of the Selected Parts of the Czech Moldanubicum Regarding a Potential Possibility to Place a Deep Geological Repository in the EDU-West” (Czech Radioactive Waste Repository Authority—SURAO). Institutional support RVO 67985831 (to MS) is also acknowledged. The National Centre for Isotope Geochemistry (NCIG) at University College Dublin is funded mainly by Science Foundation Ireland, including Grant no. 04/BR/ES0007/EC07 awarded to J.S.D.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Janoušek.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janoušek, V., Hanžl, P., Svojtka, M. et al. Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif. Int J Earth Sci (Geol Rundsch) 109, 1767–1810 (2020). https://doi.org/10.1007/s00531-020-01872-2

Download citation

Keywords

  • Ultrapotassic magmatism
  • Durbachites
  • Geochemistry
  • U–Pb LA-ICP-MS zircon dating
  • Třebíč Pluton
  • Variscan Orogeny
  • Bohemian Massif