Skip to main content
Log in

Paleocene Neo-Tethyan slab rollback constrained by A1-type granitic intrusion in the Gaoligong–Tengliang–Yingjiang belt of the Eastern Himalayan Syntaxis, SE Tibet

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Slab rollback is one of the primary processes in shaping tectonic framework. However, in the Tibet–Himalaya orogen, the timing of the Neo-Tethyan slab rollback remains controversial. In this contribution, we investigated an early Paleocene (ca. 62 Ma) A1-type granitic intrusion (South Gongshan) from the Gaoligong–Tengliang–Yingjiang (GTY) area, SE Tibet. It is mainly characterized by high 10,000*Ga/Al ratios (4.0–9.1) and extremely high HFSEs contents (Zr + Nb + Ce + Y = 669–3146 ppm), with relatively low Y/Nb ratios (0.8–1.1). The samples collected from the intrusion exhibit high zircon εHf(t) (+1.1 to +5.7) and whole-rock εNd(t) values (− 0.8 to − 3.1). Geochemical data indicated that it was probably produced by extreme FC of asthenospheric mantle-derived basaltic magmas. Together with results from convergence rate between India and Asia, the emplacement of the South Gongshan intrusion was likely to be associated with a transition from flat to steep subduction triggered by the Neo-Tethyan slab rollback. We proposed that the Neo-Tethyan slab rollback beneath the GTY area might have occurred at ca. 62 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Chen Z, Burchfiel BC, Liu Y, King RW, Royden LH, Tang W, Wang E, Zhao J, Zhang X (2000) Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J Geophys Res 105(B7):16215–16227

    Article  Google Scholar 

  • Chen L, Qin KZ, Li GM, Li JX, Xiao JX, Zhao JX, Fan X (2015a) Zircon U-Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: constraints on timing, petrogenesis, and tectonic transformation. Lithos 212–215:379–396

    Article  Google Scholar 

  • Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH, Zhu JJ (2015b) Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr–Nd isotopes. Lithos 212–215:93–110

    Article  Google Scholar 

  • Chu MF, Chung SL, Song B, Liu DY, O’Reilly SY, Pearson NJ, Ji JQ, Wen DJ (2006) Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34:745–748

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Mineral 71:317–324

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual source model. Geology 19:163–166

    Article  Google Scholar 

  • Dall’Agnol R, Oliveira DC (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil:implications for classification and petrogenesis of A-type granites. Lithos 93:215–233

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gibbons AD, Barckhausen U, Bogaard PVD, Hoernle K, Werner R, Whittaker JM, Müller RD (2012) Constraining the Jurassic extent of Greater India: tectonic evolution of the West Australian margin. Geochem Geophys Geosyst 13:Q05W13

    Google Scholar 

  • Gvirtzman Z, Nur A (1999) The formation of Mount Etna as the consequence of slab rollback. Nature 401:782–785

    Article  Google Scholar 

  • Hu XM, Garzanti E, Wang JG, Huang WT, An W, Webb A (2016) The timing of India–Asia collision onset-Facts, theories, controversies. Earth Sci Rev 160:264–299

    Article  Google Scholar 

  • Huang HQ, Li XH, Li WX, Li ZX (2011) Formation of high δ18O fayalite-bearing A-type granite by high temperature melting of granulitic metasedimentary rocks, southern China. Geology 39:903–906

    Article  Google Scholar 

  • Jiang YH, Wang GC, Qing L, Zhu SQ, Ni CY (2017) Early Jurassic A-type granites in Southeast China: shallow dehydration melting of Early Paleozoic granitoids by basaltic magma intraplating. J Geol 125:351–366

    Article  Google Scholar 

  • Jiang JS, Zheng YY, Gao SB, Zhang YC, Huang J, Liu J, Wu S, Xu J, Huang LL (2018a) The newly-discovered Late Cretaceous igneous rocks in the Nuocang district: products of ancient crust melting triggered by Neo-Tethyan slab rollback in the western Gangdese. Lithos 308–309:294–315

    Article  Google Scholar 

  • Jiang XY, Li H, Ding X, Wu K, Guo J, Liu JQ, Sun WD (2018b) Formation of A-type granites in the lower Yangtze River Belt: a perspective from apatite geochemistry. Lithos 304–307:125–134

    Article  Google Scholar 

  • Kerr A, Fryer BJ (1993) Nd isotopic evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem Geol 104:39–60

    Article  Google Scholar 

  • Kumar P, Yuan XH, Kumar MR, Kind R, Li XQ, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  Google Scholar 

  • Lee TY, Lawver LA (1995) Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251:85–128

    Article  Google Scholar 

  • Lee H-Y, Chung SL, Wang JR (2003) Miocene Jiali faulting and implications for Tibet tectonic evolution. Earth Plane Sci Lett 205:185–194

    Article  Google Scholar 

  • Liu HC, Wang YJ, Cawood PA, Guo XF (2017) Episodic slab rollback and back-arc extension in the Yunnan-Burma region: insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks. Geol Soc Am Bull 129(5–6):698–714. https://doi.org/10.1130/B31604.1

    Google Scholar 

  • Ma L, Wang Q, Li ZX, Wyman DA, Jiang ZQ, Yang JH, Gou GN, Guo HF (2013a) Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up”in southern Lhasa (Tibet). Lithos 172–173:17–30

    Article  Google Scholar 

  • Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN, Guo HF (2013b) Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos 175–176:315–332

    Article  Google Scholar 

  • Ma XX, Xu ZQ, Meert JG (2017) Syn-convergence extension in the southern Lhasa terrane: evidence from late Cretaceous adakitic granodiorite and coeval gabbroic-dioritic dykes. J Geodyn 110:12–30

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, the uplift of the Tibetan plateau, and the Indian Monsoon. Rev Geophys 31:357–396

    Article  Google Scholar 

  • Patiño Douce AE (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25:743–746

    Article  Google Scholar 

  • Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Qi XX, Zhu LH, Grimmer JC, Hu ZC (2015) Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data: Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. J Asian Earth Sci 110:170–188

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The crust. Treatise on geochemistry, vol 3. Elsevier-Pergamum, Oxford, pp 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

  • Rutter MJ, Wyllie PJ (1988) Melting of vapour-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust. Nature 331:159–160

    Article  Google Scholar 

  • Shi YR, Anderson JL, Wu ZH, Yang ZY, Li LL, Ding J (2016) Age and origin of Early Paleozoic and Mesozoic granitoids in western Yunnan Province, China: geochemistry, SHRIMP zircon ages, and Hf-in-zircon isotopic compositions. J Geol 124:617–630

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blcakwell, Oxford, p 312

    Google Scholar 

  • Van Hinsbergen DJJ, Steinberger B, Doubrovine PV, Gassmöller R (2011) Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J Geophys Res 116:B06101

    Google Scholar 

  • Wang Q, Zhang PZ, Freymueller JT et al (2001) Present-day crustal deformation in China constrained by global positioning system measurements. Science 294:574–577

    Article  Google Scholar 

  • Wang YJ, Fan WM, Zhang YH, Peng TP, Cheng XY, Xu YG (2006) Early Oligocene rotational extrusion on the east of India: structural and 40Ar/39Ar geochronological evidences from the ductile fault systems surrounding southeastern Tibetan syntaxis (western Yunnan). Tectonophysics 418:235–254

    Article  Google Scholar 

  • Wang R, Richards JP, Hou ZQ, An F, Creaser RA (2015a) Zircon U-Pb age and Sr–Nd–Hf–O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: evidence for the timing of Neo-Tethyan slab breakoff. Lithos 224–225:179–194

    Article  Google Scholar 

  • Wang YJ, Li SB, Ma LY, Fan WM, Cai YF, Zhang YH, Zhang FF (2015b) Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction. Gondwana Res 27:1474–1486

    Article  Google Scholar 

  • Wang DB, Wang BD, Yin FG, Sun ZM (2019) Petrogenesis and tectonic implications of Late Mesoproterozoic A1- and A2-type felsic lavas from the Huili Group, southwestern Yangtze Block. Geol Mag. https://doi.org/10.1017/S0016756818000882

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH (2008) Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol 252:191–201

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wickham SM, Alberts AD, Litvinovsky BA, Bindeman IN, Schauble EA (1996) A stable isotope study of anorogenic magmatism in East Central Asia. J Petrol 37:1063–1095

    Article  Google Scholar 

  • Wu FY, Huang BC, Ye K, Fang AM (2008) Collapsed Himalaya–Tibetan orogen and the rising Tibetan Plateau. Acta Petrol Sinica 24:1–30 (In Chinese with English abstract)

    Google Scholar 

  • Xu YG, Lan JB, Yang QJ, Huang XL, Qiu HN (2008) Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chem Geol 255:439–453

    Article  Google Scholar 

  • Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR, Xie LW (2012) Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes. J Asian Earth Sci 53:151–175

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Ann Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yin A, Nie SY (1996) A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison M (eds) The tectonic evolution of Asia. University Press, Cambridge, pp 442–484

    Google Scholar 

  • Zhao SW, Lai SC, Qin JF, Zhu RZ (2016) Petrogenesis of Eocene granitoids and microgranular enclaves in the western Tengchong Block: constraints on eastward subduction of the Neo-Tethys. Lithos 264:96–107

    Article  Google Scholar 

  • Zhou Q, Liu Z, Yang L, Wang GC, Liao ZW, Li YX, Wu JY, Wang SW, Qing CS (2018) Petrogenesis of mafic and felsic rocks from the Comei large igneous province, South Tibet: implications for the initial activity of Kerguelen plume. Geol Soc Am Bull 130:811–824

    Article  Google Scholar 

  • Zhu B, Kidd WSF, Rowley DB, Curries BS, Shafique N (2005) Age of initiation of the India–Asia collision in the East-Central Himalaya. J Geol 113:265–285

    Article  Google Scholar 

  • Zhu RZ, Lai SC, Qin JF, Zhao SW (2015) Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: petrogenesis and tectonic implications. J Asian Earth Sci 100:145–163

    Article  Google Scholar 

  • Zhu DC, Wang Q, Zhao ZD (2017) Constraining quantitatively the timing and process of continent-continent collision using magmatic record: method and examples. Sci China Earth Sci 60:1040–1056

    Article  Google Scholar 

  • Zhu RZ, Lai SC, Qin JF, Zhao SW (2018) Early-Cretaceous syenites and granites in the Northeastern Tengchong Block, SW China: petrogenesis and tectonic implications. Acta Geol Sinica 92:1349–1365 (In Chinese with English abstract)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Wolf-Christian Dullo (editor in chief), J.F. Moyen (topic editor), Bernard Bonin, and other anonymous reviewers for their thoughtful reviews and constructive comments. This study is financially supported by the National Natural Science Foundation of China (Grants 41703022), Fundamental Research Funds for the Central Universities (lzujbky-2018-52), Joint Foundation Project between Yunnan Science and Technology Department and Yunnan University (Grants C176240210019) and Geology Discipline Construction Project of Yunnan University (Grants C176210227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Cheng Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liao, SY., Tan, SC. et al. Paleocene Neo-Tethyan slab rollback constrained by A1-type granitic intrusion in the Gaoligong–Tengliang–Yingjiang belt of the Eastern Himalayan Syntaxis, SE Tibet. Int J Earth Sci (Geol Rundsch) 108, 2113–2128 (2019). https://doi.org/10.1007/s00531-019-01752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01752-4

Keywords

Navigation