Skip to main content
Log in

Surface volume and gravity changes due to significant earthquakes occurred in central Italy from 2009 to 2016

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We have modelled the surface volume and gravity changes caused by four seismic events: three mainshocks (moment magnitude Mw 6.0, 5.9, 6.5) occurred during the last seismic period started on 2016, August 24 in central Italy, and the 2009, April 6 L’Aquila Earthquake (Mw 6.3). Our calculations start from the source parameters estimated by the inversion of the largest dataset of Interferometric Synthetic Aperture Radar (InSAR) and global positioning system observations ever managed in Italy after earthquake occurrences, based on the half-space elastic dislocation theory. The vertical displacements modelled after the 2016 events allow to infer a substantial unbalance between the subsided and uplifted volumes. In particular, we detected ~ 106 × 106 m3 of hangingwall subsidence against ~ 37 × 106 m3 of footwall uplift, that accounts for ~ 74% of the total volume mobilization. From the ratio between the footwall and total deformed volumes, we have computed an average fault dip of ~ 47°, in line with the values retrieved by seismological methods. The total gravity variations which affected the study area are of the order of ~ 1 μGal (1 μGal = 10−8 ms−2) in the far field, and ~ 170 μGal in the near field. The area affected within a gravity change of 1 μGal is ~ 140 km long and ~ 57 km wide, parallel to the Apennines mountain chain. The larger contribution is given by positive variations which account for the tensional style of deformation and larger subsided area. The significant gravity variations modelled from the coseismic deformations point out the need to update our knowledge about the absolute gravity field in Italy carrying out extensive measurements, and to align Italy to the recent international standards about national gravity and height networks (International Association of Geodesy, IAG Report, Commission 2—gravity field, http://www.iag-commission2.ch, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anzidei M et al (2009) Coseismic deformation of the destructive April 6, 2009 L’Aquila Earthquake (central Italy) from GPS data. Geophys Res Lett 36:L17307. https://doi.org/10.1029/2009gl039145

    Article  Google Scholar 

  • Atzori S, Hunstad I, Chini M, Salvi S, Tolomei C, Bignami C, Stramondo S, Trasatti E, Antonioli A, Boschi E (2009) Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila Earthquake (central Italy). Geophys Res Lett 36:L15305. https://doi.org/10.1029/2009gl039293

    Article  Google Scholar 

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy). J Seismol 8:407–425

    Article  Google Scholar 

  • Brozzetti F, Boncio P, Lavecchia G, Pace B (2009) Present activity and seismogenic potential of a low-angle normal fault system (Città di Castello, Italy): constraints from surface geology, seismic reflection data and seismicity. Tectonophysics 463:31–46. https://doi.org/10.1016/j.tecto.2008.09.023

    Article  Google Scholar 

  • Brozzetti F, Boncio P, Cirillo D, Ferrarini F, Nardis R, Testa A, Liberi F, Lavecchia G (2019) High-resolution field mapping and analysis of the August–October 2016 coseismic surface faulting (central Italy earthquakes): slip distribution, parameterization, and comparison with global earthquakes. Tectonics 38(2):417–439

    Article  Google Scholar 

  • Calderoni G, Rovelli A, Di Giovambattista R (2017) Rupture directivity of the strongest 2016–2017 central Italy earthquakes. J Geophys Res Solid Earth 122:9118–9131. https://doi.org/10.1002/2017jb014118

    Article  Google Scholar 

  • Cambiotti G, Sabadini R (2013) Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku Earthquake. J Geophys Res Solid Earth 118:183–194. https://doi.org/10.1029/2012jb009555

    Article  Google Scholar 

  • Cheloni D, D’Agostino N, D’Anastasio E, Avallone A, Mantenuto S, Giuliani R, Mattone M, Calcaterra S, Gambino P, Dominici D, Radicioni F, Castellini F (2010) Coseismic and initial postseismic slip of the 2009 MW 6.3 L’Aquila Earthquake, Italy, from GPS measurements. Geophys J Int 181:1539–1546. https://doi.org/10.1111/j.1365-246x.2010.04584.x

    Google Scholar 

  • Cheloni D, Giuliani R, D’Anastasio E, Atzori S, Walters RJ, Bonc L, D’Agostino N, Mattone M, Calcaterra S, Gambino P, Deninno F, Maseroli R, Stefanelli G (2014) Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) MW 6.3 Earthquake and implications for seismic potential along the Campotosto Fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics 622:168–185. https://doi.org/10.1016/j.tecto.2014.03.009

    Article  Google Scholar 

  • Cheloni D et al (2017) Geodetic model of the 2016 central Italy earthquake sequence inferred from InSAR and GPS data. Geophys Res Lett 44:6778–6787. https://doi.org/10.1002/2017gl073580

    Article  Google Scholar 

  • Chiarabba C, De Gori P, Cattaneo M, Spallarossa D, Segou M (2018) Faults geometry and the role of fluids in the 2016–2017 central Italy seismic sequence. Geophys Res Lett 45:6963–6971. https://doi.org/10.1029/2018gl077485

    Article  Google Scholar 

  • Chiaraluce L, Amato A, Cocco M, Chiarabba C, Selvaggi G, Di Bona M, Piccinini D, Deschamps A, Margheriti L, Courboulex F, Ripepe M (2004) Complex normal faulting in the Apennines Thrust-and-Fold Belt: the 1997 seismic sequence in central Italy. Bull Seismol Soc Am 94(1):99–116

    Article  Google Scholar 

  • Chiaraluce L, Di Stefano R, Tinti E, Scognamiglio L, Michele M, Casarotti M, Cattaneo M, De Gori P, Chiarabba C et al (2017) The 2016 central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88:757–771

    Article  Google Scholar 

  • Chinnery MA (1961) The deformation of ground around surface faults. Bull Seismol Soc Am 51:355–372

    Google Scholar 

  • Ciaccio MG (2016) Instrumental seismicity of the Amatrice Earthquake epicentral area: a review. Ann Geophys. https://doi.org/10.4401/ag-7283

    Google Scholar 

  • Cunietti M, Inghilleri G (1955) La rete gravimetrica fondamentale italiana. Memorie Commissione Geodetica Italiana 8. Stamperia Cesare Tamburini fu Camillo, Milano (in Italian)

  • Devoti R (2012) Combination of coseismic displacement fields: a geodetic perspective. Ann Geophys 55(4):781–787. https://doi.org/10.4401/ag-6119

    Google Scholar 

  • Devoti R, Riguzzi F (2017) The velocity field of the Italian area. Rend Fis Acc Lincei 29(Suppl 1):S51–S58. https://doi.org/10.1007/s12210-017-0651-x

    Google Scholar 

  • Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174

    Article  Google Scholar 

  • Devoti R, D’Agostino N, Serpelloni E, Pietrantonio G, Riguzzi F, Avallone A, Cavaliere A, Cheloni D, Cecere G, D’Ambrosio C, Falco L, Selvaggi G, Métois M, Esposito A, Sepe V, Galvani A, Anzidei M (2017) The Mediterranean Crustal Motion Map compiled at INGV. Ann Geophys. https://doi.org/10.4401/ag-7059

    Google Scholar 

  • Di Luccio F, Ventura G, Di Giovambattista R, Piscini A, Cinti FR (2010) Normal faults and thrusts reactivated by deep fluids: the 6 April 2009 Mw 6.3 L’Aquila Earthquake, central Italy. J Geophys Res 115:B06315. https://doi.org/10.1029/2009jb007190

    Article  Google Scholar 

  • Falcucci E, Gori S, Peronace E, Fubelli G, Moro M, Saroli M, Giaccio B, Messina P, Naso G, Scardia G, Sposato A, Voltaggio M, Galli P, Galadini F (2009) The Paganica Fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L’Aquila, central Italy). Seismol Res Lett 80(6):940–950

    Article  Google Scholar 

  • Falcucci E, Gori S, Galadini F, Fubelli G, Moro M, Saroli M (2016) Active faults in the epicentral and mesoseismal Ml 6.0 24, 2016 Amatrice Earthquake region, central Italy. Methodological and seismotectonic issues. Ann Geophys. https://doi.org/10.4401/ag-7266

    Google Scholar 

  • Fu G (2007) Surface gravity changes caused by tied-generating potential and by internal dislocation in a 3-D heterogeneous earth. Thesis, University of Tokyo, Japan

  • Galadini F, Galli P (2003) Paleoseismology of silent faults in the central Apennines (Italy): the Mt. Vettore and Laga Mts Faults. Ann Geophys. https://doi.org/10.4401/ag-3457

    Google Scholar 

  • Galvani A, Anzidei M, Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F, Serpelloni E (2012) The interseismic velocity field of the central Apennines from a dense GPS network. Ann Geophys. https://doi.org/10.4401/ag-6168

    Google Scholar 

  • Gentili S, Di Giovambattista R, Peresan A (2017) Seismic quiescence preceding the central Italy earthquakes. PEPI 272:27–33. https://doi.org/10.1016/j.pepi.2017.09.004

    Google Scholar 

  • Harms J, Ampuero J-P, Barsuglia M, Chassande-Mottin E, Montagner J-P, Somala SN, Whiting BF (2015) Transient gravity perturbations induced by earthquake rupture. Geophys J Int 201(3):1416–1425

    Article  Google Scholar 

  • IAG Report (2015) Commission 2. https://iag.dgfi.tum.de/fileadmin/handbook/handbook_2016/304_Commission_2.pdf

  • Iezzi F, Roberts G, Walker JF, Papanikolaou I (2019) Occurrence of partial and total coseismic ruptures of segmented normal fault systems: insights from the central Apennines, Italy. J Struct Geol 126:83–99. https://doi.org/10.1016/j.jsg.2019.05.003

    Article  Google Scholar 

  • Imanishi Y, Sato T, Higashi T, Sun W, Okubo S (2004) A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science 306:476–478

    Article  Google Scholar 

  • Juhel K, Ampuero J-P, Barsuglia M, Bernard P, Chassande-Mottin E, Fiorucci D et al (2018) Earthquake early warning using future generation gravity strain meters. J Geophys Res Solid Earth. https://doi.org/10.1029/2018jb016698

    Google Scholar 

  • Lavecchia G et al (2016) Ground deformation and source geometry of the 24 August 2016 Amatrice Earthquake (central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural–geological data. Geophys Res Lett 43(12):389–12398. https://doi.org/10.1002/2016gl071723

    Google Scholar 

  • Locati M, Camassi R, Rovida A, Ercolani E, Bernardini F, Castelli V, Caracciolo CH, Tertulliani A, Rossi A, Azzaro R, D’Amico S, Conte S, Rocchetti E (2016) DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.6092/ingv.it-dbmi15

  • Malagnini L, Lucente FP, De Gori P, Akinci A, Munafo I (2012) Control of pore fluid pressure diffusion on fault failure mode: insights from the 2009 L’Aquila seismic sequence. J Geophys Res 117:B05302. https://doi.org/10.1029/2011jb008911

    Article  Google Scholar 

  • Marson I, Morelli C (1977) First order gravity net in Italy. Boll Geod Sci Affin XXXVII 4:659–689

    Google Scholar 

  • Maruyama T (1964) Static elastic dislocations in an infinite and semi-infinite medium. Bull Earthq Res Inst Tokyo Univ 42:289–368

    Google Scholar 

  • Montagner J-P, Juhel K, Barsuglia M, Ampuero JP, Chassande-Mottin E, Harms J, Whiting B, Bernard P, Clévédé E, Lognonné P (2016) Prompt gravity signal induced by the 2011 Tohoku-Oki Earthquake. Nat Commun 7:13349. https://doi.org/10.1038/ncomms13349

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okubo S (1991) Potential and gravity changes raised by point dislocations. Geophys J Int 105:573–586

    Article  Google Scholar 

  • Okubo S (1992) Gravity and potential changes due to shear and tensile faults in a half-space. J Geophys Res 97:7137–7144

    Article  Google Scholar 

  • Pizzi A, Galadini F (2009) Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 476(1–2):304–319. https://doi.org/10.1016/j.tecto.2009.03.018

    Article  Google Scholar 

  • Pollitz FF (1996) Coseismic deformation from earthquake faulting in a layered spherical Earth. Geophys J Int 125:1–4

    Article  Google Scholar 

  • Pollitz FF (1997) Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. J Geophys Res 102(B8):17921–17941

    Article  Google Scholar 

  • Pondrelli S, Salimbeni S, Morelli A, Ekström G, Olivieri M, Boschi E (2010) Seismic moment tensors of the April 2009, L’Aquila (central Italy), earthquake sequence. Geophys J Int 180(1):238–242. https://doi.org/10.1111/j.1365-246x.2009.04418.x

    Article  Google Scholar 

  • Press F (1965) Displacements, strains, and tilts at teleseismic distances. J Geophys Res 70:2395–2412

    Article  Google Scholar 

  • Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.6092/ingv.it-cpti15

  • Segall P (2010) Earthquake and volcano deformations. Princeton University Press, Princeton

    Book  Google Scholar 

  • Shen C, Li H, Tan H (2010) Simulation of co-seismic gravity change and deformation of Wenchuan Ms 8.0 Earthquake. Geod Geodyn 1:1–14. https://doi.org/10.3724/sp.j.1246.2010.00008

    Article  Google Scholar 

  • Sun W, Okubo S (1998) Surface potential and gravity changes due to internal dislocations in a spherical Earth II. Application to a finite fault. Geophys J Int 132:79–88

    Article  Google Scholar 

  • Sun W, Okubo S, Vanicek P (1996) Global displacement caused by dislocations in a realistic Earth model. J Geophys Res 101:8561–8577

    Article  Google Scholar 

  • Tinti E, Scognamiglio L, Michelini A, Cocco M (2016) Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice Earthquake estimated with rapid finite-fault inversion. Geophys Res Lett 43:10745–10752. https://doi.org/10.1002/2016gl071263

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: animation built on earthquake stress transfer. J Geophys Res 110:B05S16. https://doi.org/10.1029/2004jb003415

    Article  Google Scholar 

  • Valentini A, Pace B, Boncio P, Visini F, Pagliaroli A, Pergalani F (2019) Definition of seismic input from fault-based PSHA: remarks after the 2016 central Italy earthquake sequence. Tectonics. https://doi.org/10.1029/2018tc005086

    Google Scholar 

  • Valerio E, Tizzani P, Carminati E, Doglioni C, Pepe S, Petricca P, De Luca C, Bignami C, Solaro G, Castaldo R, De Novellis V, Lanari R (2018) Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia Earthquake (central Italy) investigated through seismological data, DInSAR measurements, and numerical modelling. Remote Sens. https://doi.org/10.3390/rs10121901

    Google Scholar 

  • Vallée M, Ampuero JP, Juhel K, Bernard P, Montagner JP, Barsuglia M (2017) Observations and modeling of the elastogravity signals preceding direct seismic waves. Science 358(6367):1164–1168

    Article  Google Scholar 

  • Van Camp M, de Viron O, Avouac J-P (2016) Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements. Geophys Res Lett 43:4313–4320. https://doi.org/10.1002/2016gl068648

    Article  Google Scholar 

  • Van Camp M, de Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time-variable gravity measurements. Rev Geophys 55:938–992. https://doi.org/10.1002/2017rg000566

    Article  Google Scholar 

  • Walsh JB (1969) Dip angle of faults as calculated from surface deformation. J Geophys Res 74(8):2070–2080

    Article  Google Scholar 

  • Wang H (1999) Surface vertical displacements potential, perturbations and gravity changes of a viscoelastic Earth model induced by internal point dislocations. Geophys J Int 137(2):429–440

    Article  Google Scholar 

  • Wang R, Lorenzo-Martin F, Roth F (2006) PSGRN/PSCMP—a new code for calculation co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci 32:527–541

    Article  Google Scholar 

Download references

Acknowledgements

This study is based on geodetic data and models acquired and processed during the 2016 and 2009 earthquake emergencies, therefore, we are very grateful to Daniele Cheloni and all the INGV Geodetic Team, together we worked intensely and with passion during all that time. We are also grateful to the Reviewers and the Editor, their suggestions helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Riguzzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riguzzi, F., Tan, H. & Shen, C. Surface volume and gravity changes due to significant earthquakes occurred in central Italy from 2009 to 2016. Int J Earth Sci (Geol Rundsch) 108, 2047–2056 (2019). https://doi.org/10.1007/s00531-019-01748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01748-0

Keywords

Navigation